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Foreword

These lecture notes have been devised as background material for a one-semester master

course1 in theoretical physics, firstly given at the University of Bern during the fall

semester 2010. The typical audience includes physics students holding a bachelor

and then familiar with nonrelativistic quantum mechanics, special relativity, classical

electrodynamics or, more generally, the classical theory of fields. Even if knowledge of

quantum field theory is not a prerequisite, it should be at least studied in parallel.

The lecture notes have four parts. The first part describes the four main tools used

in gauge theories of elementary particle interactions and in particular in the Standard

Model of Glashow, Salam and Weinberg: fields and gauge symmetries, Lie groups and

Lie algebras, gauge-invariant Lagrangian field theories and the spontaneous breaking of

continuous symmetries. The notes include a discussion of spinor fields since relativistic

quantum mechanics is not always known to bachelor physicists. The second part is

the construction of the Standard Model and the derivation of its simplest physical

properties and predictions (masses, couplings and parameters, structure of interactions,

neutrinos, . . . ). In these two parts, the existence of a quantum field theory only

appears through few elements (relation field–particle, conditions for a perturbatively

renormalizable, anomaly-free Lagrangian) which can be, at this stage, simply admitted.

The third part discusses more sophisticated aspects of Standard Model phenomenol-

ogy. Here, results on decay and scattering processes are used, which can only be de-

rived using quantum field theory methods. But the mere analysis of these results, as

attempted in these notes, has its own interest. The final fourth part briefly presents

some theoretical extensions of the Standard Model, keeping of course the discussion

at the level of four-dimensional extensions in the framework of quantum field theory

(excluding then unification with gravitation, extra dimensions, strings, . . . ).

1Two periods of fourty-five minutes and one period of exercices each week, fourteen weeks in the
semester.
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Conventions, units and notations

Units

We follow the practice common in particle physics to work in units in which the speed

of light c = 1. Time is then measured in length units and momentum and energy units

coincide. We also use ~ = 1, which implies that a momentum is an inverse length.

Then, a unit of energy also measures distance−1, time−1 and momentum.

Conventions, in general

Whenever (except otherwise mentioned) indices are repeated in a formula, a sum over

all possible values of these indices is understood. All equations should then have the

same “open” indices on both sides.

For two operators A and B, [A,B] = AB − BA (commutator) and {A,B} =

AB +BA (anticommutator).

Pauli matrices: {σi, σj} = 2δij I2, [σi, σj] = 2i εijk σk, σi
† = σi,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ1σ2σ3 = i I2.

Symmetrization of indices:

A(a1a2...ak) =
1

n!

(
Aa1a2...ak

+ all permutations of indices a1, a2, . . . , ak

)
.

Antisymmetrization of indices:

A[a1a2...ak] =
1

n!

(
Aa1a2...ak

+ (−1)δP × all permutations P of indices a1, a2, . . . , ak

)
,

where δP is the signature of the permutation P .

Conventions for space-time

The Minkowski metric is

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
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x CONVENTIONS, UNITS AND NOTATIONS

in (cartesian) coordinates xµ = (x0, ~x), x0 = ct = t. The inverse ηµν is (numerically)

the same. Then, since xµ = (x0,−~x),

∂µ =
∂

∂xµ
=

(
∂

∂x0
, ~∇
)
, ∂µ =

∂

∂xµ
=

(
∂

∂x0
,−~∇

)
,

where ~∇ is the gradient operator.

When explicit indices are not needed, the four-vector xµ (which is not xµ) is denoted

simply by x. Except otherwise mentioned, repeated indices are summed over all their

possible values.

A Lorentz-invariant sum is a contraction of indices. One index is covariant (lower

index), one index is contravariant (upper index). For instance, the Lorentz invariant

product of two 4-vectors x and y is

xy = xµyµ = xµy
µ = ηµνxµyν = ηµνx

µyν .

As hereabove, for two 4-vectors x and y, the Lorentz-invariant product is often simply

denoted by xy.



Part I

Gauge symmetry and gauge
theories

1





Chapter 1

Gauge invariance and Maxwell
electrodynamics

1.1 Gauge invariance of Maxwell equations

Maxwell vacuum equations are

~∇ · ~B = 0, ~∇× ~E +
∂ ~B

∂t
= 0,

~∇ · ~E =
1

ε0
ρ, ~∇× ~B − 1

c2

∂ ~E

∂t
=

1

ε0c2
~j.

(1.1)

The equations in the second line relate the electric and magnetic fields ~E(t, ~x) and
~B(t, ~x) to their sources, the charge density ρ(t, ~x) and the current density ~j(t, ~x). They

imply the continuity equation
∂ρ

∂t
+ ~∇ ·~j = 0, (1.2)

which is the local version of (total) electric charge conservation: Maxwell equations

only make sense for sources verifying the continuity equation. The first line specifies

intrinsic properties of ~E and ~B. These equations can be solved in terms of an electric

potential Φ(t, ~x) and a magnetic (or vector) potential ~A(t, ~x):

~B = ~∇× ~A, ~E = −~∇Φ− ∂ ~A

∂t
. (1.3)

Replacing, the Maxwell equations reduce to four second order equations for the four

fields Φ and ~A:

∆Φ +
∂

∂t
~∇ · ~A = − 1

ε0
ρ,

1

c2

∂2 ~A

∂t2
−∆ ~A+ ~∇

(
~∇ · ~A+

1

c2

∂Φ

∂t

)
=

1

ε0c2
~j. (1.4)

3



4 CHAPTER 1. GAUGE INVARIANCE AND MAXWELL ELECTRODYNAMICS

Gauge invariance of Maxwell theory is the observation that the electromagnetic

fields ~B and ~E stay unchanged if Φ and ~A undergo the transformation

~A −→ ~A′ = ~A− ~∇λ , Φ −→ Φ′ = Φ +
∂λ

∂t
(1.5)

for an arbitrary function of the space-time point λ(t, ~x). Then, gauge invariance indi-

cates that three functions are sufficient to determine the electromagnetic fields ~E and
~B.

For instance, we may rewrite eqs. (1.4)

2Φ =
1

ε0
ρ+

∂

∂t

(
1

c2

∂Φ

∂t
+ ~∇ · ~A

)
, 2 ~A =

1

ε0c2
~j− ~∇

(
1

c2

∂Φ

∂t
+ ~∇ · ~A

)
, (1.6)

where the d’Alembertian operator is

2 =
1

c2

∂2

∂t2
−∆, ∆ = ~∇ · ~∇. (1.7)

Since, under gauge transformation (1.5),

1

c2

∂Φ

∂t
+ ~∇ · ~A −→ 1

c2

∂Φ

∂t
+ ~∇ · ~A+ 2λ,

we may choose the Lorentz gauge

1

c2

∂Φ

∂t
+ ~∇ · ~A = 0 (1.8)

in which Maxwell equations simplify to

2Φ =
1

ε0
ρ, 2 ~A =

1

ε0c2
~j. (1.9)

Maxwell theory of electrodynamics is a relativistic theory: Maxwell equations are

covariant under Lorentz transformations with an invariant speed of light c (c is a

Lorentz scalar). To write the Maxwell equations in Lorentz-covariant form, we define

the following four-vectors:1

Aµ(x) =

(
1

c
Φ, ~A

)
, Jµ(x) =

1

ε0c2

(
cρ,~j

)
. (1.10)

The Lorentz gauge condition is ∂µAµ = 0 and gauge transformation (1.5) rewrites

Aµ −→ Aµ + ∂µλ. (1.11)

It clearly leaves the quantity

F µν = ∂µAν − ∂νAµ (1.12)

1Different conventions exist. They coincide in units c = 1.
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invariant. Since 2 = ∂µ∂µ, Maxwell equations (1.6) become

2Aµ − ∂µ(∂νA
ν) = ∂ν(∂

νAµ − ∂µAν) = ∂νF
νµ = Jµ. (1.13)

The identification with the source equations in the second line of equalities (1.1) cor-

responds finally to

Ei = cF i0, Bi = −1

2
εijkF jk, (i, j, k = 1, 2, 3) (1.14)

(Ei and Bi are the three components of ~E and ~B) which defines the gauge-invariant

electric and magnetic fields. Notice again that Maxwell equations only make sense for

a conserved current Jµ:

0 = ∂µJ
µ =

1

ε0c2

(
∂ρ

∂t
+ ~∇ ·~j

)
. (1.15)

In the absence of sources, Jµ = 0, Maxwell equations (1.13) describe electromag-

netic waves freely propagating at the speed of light, with only two polarisation states.

To see this, consider a plane wave with 4-momentum kµ and polarisation vector εµ(k):2

Aµ(k) = εµ(k) eikx.

Maxwell equations impose

k2 εµ(k) = [kε(k)] kµ. (1.16)

There are three independent solutions. The first solution has a polarisation vector

proportional to k. We may then write

Aµ(k) = ∂µ[−if(k) eikx], εµ(k) = f(k) kµ.

Since Aµ is the derivative ∂µ of a scalar function, this solution corresponds to vanishing

electromagnetic fields, F µν = 0, it can be eliminated by a gauge transformation (1.11),

it is unphysical: a potential corresponding to identically zero electromagnetic fields.

The other two independent solutions have k2 = 0 (massless waves propagating at speed

c) and kε(k) = 0, with ε(k) not proportional to k. With k2 = 0, there is a light-cone

frame in which k = (E,E, 0, 0) and then ε(k) = (0, 0, ε1, ε2). Hence, the (massless)

Maxwell field has only two transverse (to the momentum ~k) polarisation states, with

helicities ±1. The third potential solution has been removed by gauge invariance.

It is easy to verify that Maxwell equations ∂νF
νµ = Jµ are the Euler-Lagrange

equations of the Maxwell Lagrangian

LMax. = −1

4
FµνF

µν − AµJµ. (1.17)

2Since Maxwell equations are linear, we may use a complex plane-wave: real fields are linear
combinations of complex fields.
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The current vector Jµ is an “external” field verifying ∂µJ
µ = 0: LMax. does not de-

scribe any source dynamics. Since Fµν is gauge invariant, the gauge variation of the

Lagrangian is

δgaugeLMax. = −Jµ∂µλ = −∂µ(λJµ)

since ∂µJ
µ = 0. The action S =

∫
d4xLMax is invariant and its Euler-Lagrange

equations are then gauge invariant.

1.2 Spinor fields, Dirac Lagrangian

1.2.1 Spinors

Elementary charged particles are mostly spin 1/2 fermions (charged leptons e, µ, τ ,

quarks). We then need a field and a Lorentz-invariant Lagrangian to describe spin 1/2

particles. In non-relativistic quantum mechanics, the description of spin 1/2 particles

uses a doublet of complex wave functions, on which act spin operators ~S. These

operators have commutation relations

[Si, Sj] = i εijk Sk (1.18)

which correspond to the Lie algebra of SU(2) or SO(3) (see chapter 2). In other words,

the quantum mechanical description of spin 1/2 particles uses the two-dimensional

representation of SU(2).

In a relativistic theory, we need a representation of the Lorentz algebra acting on

fields ψa(x) with spin 1/2. Infinitesimal Lorentz transformations read

δ ψa(x) = − i
2
εµν(M

µν)a
b ψb(x), (1.19)

where εµν = −ενµ are the six parameters of Lorentz transformations. The generators

of the representation Mµν are matrices verifying the Lie algebra relations

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) . (1.20)

One easily verifies that

S1 = M23, S2 = M31, S3 = M12 (1.21)

verify relations (1.18) and the Lorentz algebra includes then the spin SU(2) algebra as

a subalgebra.
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To construct the appropriate Lorentz generators Mµν , the first step is to consider

the Clifford algebra3

{γµ, γν} = 2 ηµν I , {γµ, γν} = γµγν + γνγµ, (1.22)

in terms of Dirac (or Clifford) matrices γµ. Their dimension is found by solving

relations (1.22): they can be realized in terms of 4 × 4 matrices and I is then the

identity matrix I4 in four dimensions. An exemple of solution is

γ0 =

(
0 I2

I2 0

)
, γi =

(
0 σi
−σi 0

)
, i = 1, 2, 3, (1.23)

where σi are Pauli matrices and I2 is the two-dimensional identity matrix. This solution

is the Weyl or chiral representation. A representation in terms of 4 × 4 imaginary

matrices is

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ1 0
0 iσ1

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
iσ3 0
0 iσ3

)
.

(1.24)

Imaginary representations are often called Majorana representations. All representa-

tions of the Clifford algebra in terms of 4× 4 matrices are actually equivalent.4 Notice

that

γµ† = γ0γµγ0, Tr γµ = 0. (1.25)

The first important fact is that, using Clifford algebra (1.22), generators

Mµν = σµν ≡ i

4
[γµ, γν ] (1.26)

verify the commutation relations (1.20) of Lorentz algebra. Hence there exists a rep-

resentation of Lorentz algebra using four-component complex spinors5

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 . (1.27)

The four-component field ψ(x) is a Dirac spinor, with variation

ψ(x) −→ ψ′(x′) = ψ(x) + δψ(x),

δψ(x) = − i
2
εµνσ

µνψ(x)
(1.28)

3Also named Dirac algebra. The Clifford algebra has δµν instead of ηµν , and signs are changed by
simply multiplying the corresponding γµ by ±i.

4Two choices γµ and γ̃µ are always related by γ̃µ = M−1γµM , with a single matrix M .
5In formula (1.19), a and b take then four values.
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when the Lorentz transformation of space-time coordinates δxµ = x′µ − xµ = ηµνενρx
ρ

is applied.

In the Majorana representation (1.24) where γµ matrices are imaginary, Lorentz

generators are also imaginary. It is then possible to impose a Lorentz-invariant reality

condition on the spinor ψ, reducing the number of fields by a factor 1/2. In this way,

one defines a Majorana spinor. Of course, a similar, but more complicated, constraint

exists in all realizations of the γµ matrices. Majorana spinors, however, cannot have

an electric charge, or any other type of charge.

In quantum field theory, a Dirac spinor describes four particle states: a spin 1/2

particle with mass m (two components) and its antiparticle, with same mass m (two

components).6 The Majorana spinor describes a spin 1/2 particle identical to its an-

tiparticle. It then cannot have any charge, which would necessarily have opposite signs

for the particle and the antiparticle.

The second important fact is that there exists a fifth matrix

γ5 = −iγ0γ1γ2γ3 (1.29)

which verifies

{γ5, γ
µ} = 0 (µ = 0, 1, 2, 3), γ5

† = γ5, γ5
2 = I4, Tr γ5 = 0.

In the chiral representation (1.23), γ5 is diagonal:

γ5 =

(
I2 0
0 −I2

)
. (1.30)

In the Majorana representation (1.24), it is

γ5 =

(
σ2 0
0 −σ2

)
. (1.31)

It follows that γ5 commutes with Lorentz generators,

[γ5, σ
µν ] = 0, (1.32)

and it can then used to impose constraints on the spinor field. Concretely, one defines

two chirality projectors

PL =
1

2
(I4 + γ5), PR =

1

2
(I4 − γ5), (1.33)

verifying

PL
2 = PL, PR

2 = PR, PLPR = PRPL = 0, PL + PR = I4 (1.34)

6The field operator ψ(x) destroys a particle or creates an antiparticle.
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(a complete set of orthogonal projectors). They commute with Lorentz generators

[PL, σ
µν ] = [PR, σ

µν ] = 0, (1.35)

and their eigenvalues are 1, 1, 0, 0. The Weyl spinors

ψL = PLψ = PLψL, ψR = PRψ = PRψR, (1.36)

contain then two complex fields only and transform under Lorentz variations according

to
δψL = − i

2
εµνσ

µνPLψ = − i
2
εµνPLσ

µνψ = PLδψ,

δψR = − i
2
εµνσ

µνPRψ = − i
2
εµνPRσ

µνψ = PRδψ.
(1.37)

The indices L and R stand for left-handed and right-handed chirality. Each two-

component Weyl spinor carries a representation of the Lorentz algebra, it is the ba-

sic field to describe in a relativistic field theory spin 1/2 particles. Since the four-

component Dirac spinor is the sum ψL + ψR, is carries a reducible representation of

Lorentz symmetry. In the chiral representation (1.23) of γµ matrices,

ψL =

(
χL
0

)
, ψR =

(
0
χR

)
, (1.38)

in terms of two-component Weyl spinors χL and χR.

In quantum field theory, the field operator χL(x) destroys a left-handed particle or

creates a right-handed antiparticle. The field χR(x) destroys a right-handed particle or

creates a left-handed antiparticle. It is then clear that one cannot impose simultane-

ously Weyl and Majorana conditions to a Dirac spinor. Firstly, this would reduce the

number of particle states to one, which is impossible for a spin 1/2 object. Secondly,

Weyl spinors are naturally charged and distinguish then particles and antiparticles.

1.2.2 Mass and spin

The next task is to prove that spinors have spin 1/2. The complete symmetry of special

relativity is the Poincaré group or algebra, which includes Lorentz transformations and

space-time translations. On a generic field φ(x), translations act by simply shifting

coordinates xµ by a constant, δxµ = aµ:

φ(x) −→ φ(x+ a) = exp

(
aµ

∂

∂xµ

)
φ(x) = exp

(
i aµ Pµ

)
φ(x).

The momentum operator, which generates translations, is then7

Pµ = −i ∂
∂xµ

= −i∂µ . (1.39)

7In non-relativistic quantum mechanics, ~P = −i~~∇.
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The Poincaré algebra is generated by translations Pµ and Lorentz transformations Mµν .

Lorentz commutation relations (1.20) are completed by

[Mµν , P ρ] = −i ηµρP ν + i ηνρP µ, [P µ, P ν ] = 0. (1.40)

This algebra has two Casimir operators I1 and I2 which, since (by definition)

[I1,2 , Pµ] = [I1,2 ,M
µν ] = 0,

are proportional to the identity on any irreducible representation (Schur’s lemma). The

first Casimir operator is I1 = ηµνPµPν = P 2 and its eigenvalue is m2, the square of the

mass m of the field.8 Then, for any relativistic field φ(x),

−(P 2 −m2)φ(x) = (2 +m2)φ(x) = 0 (Klein-Gordon equation). (1.41)

This is in particular true for the spinor field ψ(x).

The second Casimir operator is more subtle. One introduces the Pauli-Lubanski

vector

Wµ =
1

2
εµνρσP

νMρσ, (1.42)

where εµνρσ is completely antisymmetric with ε0123 = 1. Using relations (1.20) and

(1.40), one obtains

[Wµ, Pν ] = 0,

[Wµ,Mνρ] = −i (ηµνWρ − ηµρWν) ,

[Wµ,Wν ] = −iεµνρσP ρW σ.

(1.43)

Then, the second Casimir operator is

I2 = W 2 = W µWµ, [W 2, P µ] = [W 2,Mµν ] = 0. (1.44)

Using the explicit values of εµνρσ, another useful form of W 2 can be derived:9

W 2 = −1

2

(
P 2MµνMµν + 2P νPρM

ρσMσν

)
. (1.45)

Again, each (irreducible) field has a specific eigenvalue under W 2. Altogether, the

Poincaré algebra has six mutually commuting operators: P µ, P 2 and W 2. They can

be simultaneously diagonalized, with eigenvalues pµ, m2 = p2 and λW 2 .

8Notice that the sign of m2 could in principle be negative. The field would then describe a tachyon.
Such a field is allowed by special relativity but a particle with negative m2 has never been seen in
Nature.

9Recall that operators do not in general commute.
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Suppose that the field is massive: p2 = m2 > 0. By a Lorentz transformation, we

can choose a rest frame in which pµ = (m, 0, 0, 0). This frame is invariant under space

rotations generated by M12, M23 and M31 and with this choice,

W 0 = 0, W 1 = mM23 = mS1, W 2 = mM31 = mS2, W 3 = mM12 = mS3

[see eqs. (1.21)]. In addition, since

[W i,W j] = iεijkmW k, [W i,W 0] = 0, (i, j, k = 1, 2, 3),

we also recover the spin algebra (1.18). Hence

I2 = W 2 = W 0W 0 − ~W · ~W = −m2~S2 (1.46)

with eigenvalue

λW 2 = −m2s(s+ 1) (m2 > 0) s = 0, 1/2, 1, 3/2, . . . (1.47)

The conclusion is that any relativistic field (i.e. any field carrying an irreducible

representation of Poincaré algebra) has a mass m and, if m2 > 0, a spin s. This result

is true in all frames since m2 and λW 2 are eigenvalues of Lorentz-invariant operators.

The case of a massless (m2 = 0) field is different since a rest frame does not exist.

Instead, we may choose the light-cone frame pµ = (E,E, 0, 0), which is invariant under

M23 only. Since by definition W µPµ = 0, we can write

Wµ = λpµ + (0, 0,W2,W3), W µWµ = −(W2)2 − (W3)2.

with [W2,W3] = 0. Massless10 particles observed in Nature have W2 = W3 = 0 and

then

Wµ = λpµ, W 2 = 0 (m = 0). (1.48)

The proportionality constant is the helicity of the field. In our light-cone frame,

W 0 = W 1 = EM23 = ES1 = ~p · ~S, λ =
1

|~p|
~p · ~S. (1.49)

Helicity is then the projection of spin along the (spatial) momentum.

We can now return to the proof that a spinor field has spin 1/2. The Lorentz gen-

erators are given by eq. (1.26). For a massive field, inserting these Lorentz generators

in eq. (1.45) in the rest frame pµ = (m, 0, 0, 0) leads to

W 2 = −m2 s(s+ 1) I4 = −3

4
m2 I4, (1.50)

10Or nearly massless, within experimental accuracies.
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and the spin of the field is 1/2.

Notice finally that in the chiral representation (1.23) of γµ matrices where Weyl

spinors are of the form (1.38), spin operators in the rest frame (1.21) read

~S =
1

2

(
~σ 0
0 ~σ

)
.

Each Weyl spinor ψL and ψR describes then a spin 1/2, and the two components of

each Weyl spinor have helicities +1/2 and −1/2.

1.2.3 Dirac equation and Lagrangian

We need a wave equation for the Dirac spinor ψ(x). Special relativity requires covari-

ance under Lorentz transformations of the field equation and also that solutions of the

field equation verify Klein-Gordon equation (1.41). Dirac equation is

iγµ∂µψ −mψ = 0. (1.51)

Solutions also verify

0 = (iγµ∂µ +m I4)(iγν∂ν −m I4)ψ

=
(
−1

2
{γµ, γν}∂µ∂ν −m2 I4

)
ψ = −(2 +m2)ψ

which is Klein-Gordon equation. To rewrite Dirac equation in terms of Weyl spinors,

use chirality projectors (1.33). Since

PLγ
µ = γµPR, PRγ

µ = γµPL,

we obtain
PL (iγµ∂µ −m)ψ = iγµ∂µψR −mψL = 0,

PR (iγµ∂µ −m)ψ = iγµ∂µψL −mψR = 0.
(1.52)

Then, to describe a massive field, a four-component Dirac spinor ψ = ψL + ψR is

necessary.11 In contrast, the description of a massless field is consistent with a single

Weyl spinor, with wave equation

iγµ∂µψL,R = 0. (1.53)

To verify the relativistic covariance of Dirac equation, perform a Lorentz transfor-

mation of the coordinates,

x′
µ

= Λµ
νx

ν , ∂µ
′ = Λµ

ν∂ν , ηρσ = Λµ
ρΛ

ν
σηµν , Λµ

ν = ηµρη
νσΛρ

σ,

11There is another possibility: impose a reality condition on a Dirac spinor (the Dirac operator
iγµ∂µ −mI4 is real in the Majorana representation). The result is a Majorana spinor which however
cannot have an electric charge. This possibility will not be further discussed at this stage.
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and assume that if ψ(x) is a solution in coordinates xµ, there exists a linear transfor-

mation

ψ′(x′) = S(Λ)ψ(x)

such that ψ′(x′) is a solution in coordinates x′µ. We have

(iγµ∂µ
′ −m)ψ′(x′) = (iγµΛµ

ν∂ν −m)S(Λ)ψ(x)

= S(Λ)
[
iS(Λ)−1γµS(Λ) Λµ

ν∂ν −m
]
ψ(x).

Relativistic covariance is then obtained if

S(Λ)−1γµS(Λ) Λµ
ν = γν .

We now consider an infinitesimal Lorentz transformation of coordinates and of the

spinor field:

Λµ
ν = δνµ + εµρη

ρν , S(Λ) = I4 −
i

2
ερσM

ρσ = I4 +
1

8
ερσ[γρ, γσ]

and S(Λ)−1 = I4 − 1
8
ερσ[γρ, γσ]. We then need

[[γρ, γσ], γν ] = 4(γρ ηνσ − γσ ηνρ).

Since this equation is a consequence of Clifford algebra (1.22), relativistic covariance

of Dirac equation is verified.

The Dirac equation is the Euler-Lagrange equation of the Dirac Lagrangian, which

depends on ψ and on the conjugate spinor ψ. This conjugate spinor is such that the

quantity ψψ is Lorentz invariant. Since γµ† = γ0γµγ0, we also have σµν† = γ0σµνγ0

and then, according to eq. (1.19),

δψ† =
i

2
εµνψ

†σµν† =
i

2
εµνψ

†γ0σµνγ0, δψ†γ0 =
i

2
εµνψ

†γ0σµν .

The Dirac conjugate of spinor ψ is then defined as

ψ = ψ†γ0. (1.54)

One easily verifies that Dirac equation follows from the action principle applied to

Lagrangian

LD(ψ, ψ) =
i

2
ψγµ(∂µψ)− i

2
(∂µψ)γµψ −mψψ. (1.55)

Variation with respect to ψ gives eq. (1.51), variation wih respect to ψ gives the con-

jugate equation

i∂µψγ
µ +mψ = 0. (1.56)
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A simpler form of the Dirac Lagrangian is

L = i ψγµ∂µψ −mψψ. (1.57)

Since L − LD = i
2
∂µ(ψγµψ), both Lagrangians lead to identical field equations. The

first form LD has however the advantage of being explicitly hermitian.

In terms of Weyl spinors,

L = iψLγ
µ∂µψL + iψRγ

µ∂µψR −mψLψR −mψRψL, (1.58)

where

ψL = ψ†Lγ
0 = ψPR, ψR = ψPL. (1.59)

As already mentioned, both Weyl spinors are coupled by the mass term only.

The Dirac Lagrangian is clearly invariant under phase rotations of the spinor field:

ψ −→ eiα ψ, ψ −→ e−iαψ. (1.60)

The real number α is an arbitrary parameter and the theory has then U(1) symmetry.

The massless theory has a larger symmetry. In particular, phase rotations of ψL

and ΨR are now independent symmetries, and each symmetry has its own conserved

Noether current. Consider transformations

ψL −→ eiα ψL, ψL −→ e−iα ψL,

ψR −→ eiβ ψR, ψR −→ e−iβ ψR,
(1.61)

which are called chiral transformations. The conserved chiral currents are then

JµL = ψLγ
µψL = 1

2
ψγµ(1 + γ5)ψ ∝ ∂L

∂∂µψL
δψL,

JµR = ψRγ
µψR = 1

2
ψγµ(1− γ5)ψ ∝ ∂L

∂∂µψR
δψR.

(1.62)

The axial current

JµA = JµL − J
µ
R = ψγµγ5ψ (1.63)

verifies, for solutions of Dirac equation,

∂µJ
µ
A = 2imψγ5ψ.

It is conserved if the spinor field is massless. For nonzero mass m, only the vector

current

JµV = JµL + JµR = ψγµψ (1.64)

is conserved.
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1.3 Electromagnetism of a charged fermion fields

Suppose that the source of the electromagnetic field is a Dirac spinor field ψ(x) with

electric charge12 −Qe (e = 1.602 × 10−19 C is the proton or positron charge, Q is a

number). Its free propagation is described by Dirac Lagrangian (1.57)13

Lψ = ψ(iγµ∂µ −m)ψ =⇒ iγµ∂µψ = mψ, i∂µψγµ = −mψ, (1.65)

with ψ = ψ†γ0. The massive Dirac Lagrangian has a conserved Noether current ∼ JµV
[eq. (1.64], related to the global U(1) invariance of Lψ. We will write this current

Jµψ = eQψγµψ (1.66)

with Noether charge

Qψ =

∫
d3x J0 = eQ

∫
d3xψ†ψ. (1.67)

The Noether current is conserved, ∂µJ
µ
ψ = 0, for spinor fields verifying Dirac equation.

Consider now the Lagrangian

L = −1
4
FµνF

µν − AµJµψ + Lψ

= −1
4
FµνF

µν + ψ(iγµ∂µ − eQAµγµ −m)ψ
(1.68)

The field equation of the spinor field is now

iγµ∂µψ = mψ + eQAµγ
µψ, −i∂µψγµ = mψ + eQAµψγ

µ. (1.69)

There is an interaction with the electromagnetic field but the current Jµψ stays nev-

ertheless conserved: the new Lagrangian is also invariant under the global symmetry

(1.60). The strength of the interaction is given by the constant eQ: it is the electric

charge of the fermion described by ψ.

Under gauge transformations however,

δgaugeL = −eQ (ψγµψ) ∂µλ = −∂µ(λJµψ) + λ ∂µJ
µ
ψ (1.70)

The action is only invariant for spinor fields verifying their field equation, it is not a

symmetry of the action functional of arbitrary fields Aµ and ψ.

It however turns out that theory (1.68) has a different symmetry. Promote global

symmetry (1.60) with constant parameter α to a local symmetry in which the parameter

is a function α(x) of the space-time point. Then,

Lψ −→ Lψ + i (ψγµψ) e−iα∂µe
iα = Lψ − (ψγµψ) ∂µα.

12The canonically-quantized spinor field with charge −Qe destroys a particle with charge Qe or
creates an antiparticle with charge −Qe.

13From this point, we use ~ = c = 1.
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Comparing with variation (1.70), the choice α(x) = −eQλ(x) leads to an invariant

action. As a result, theory (1.68) is invariant under the combined gauge transformation

Aµ −→ Aµ + ∂µλ,

ψ −→ e−ieQλψ, ψ −→ eieQλψ.
(1.71)

Observe that

Dµψ = (∂µ + ieQAµ)ψ (1.72)

transforms according to

Dµψ −→ e−ieQλDµψ. (1.73)

Since Dµψ and ψ have the same transformations, Dµψ is called covariant derivative of

ψ. Similarly,

Dµψ = (∂µ − ieQAµ)ψ.

With these definitions, theory (1.68) rewrites

LQED = −1

4
FµνF

µν + ψ(iγµDµ −m)ψ. (1.74)

This is the Lagrangian for quantum electrodynamics (QED) of a fermion with electric

charge eQ (the corresponding spinor field ψ carries charge −eQ). Its quantization leads

to a renormalizable quantum field theory and it is actually the unique gauge-invariant

Lagrangian compatible with quantum field theory. Hence imposing the field content

(Aµ and ψ), invariance under symmetries (1.71) and compatibility with (perturbative)

quantum field theory is sufficient to completely define the Lagrangian and then the

dynamics.

1.4 Generalization: QED Lagrangian

The gauge principle works as follows:

1. Postulate the gauge group, the local invariance group of the theory. In the case

of quantum electrodynamics, the gauge group is U(1) (local phase rotation).

2. Postulate the transformations of the spin 1/2 and spin 0 fields under the gauge

group. In other words, specify in which representation of the gauge group do the

spin 1/2 and spin 0 fields transform.

3. Write the most general Lagrangian invariant under the postulated transforma-

tions of the fields and compatible with the rules of quantum field theory.
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In the case of a single Dirac spinor field with charge −Qe, the result is theory (1.74).

Suppose now that we have several Dirac spinor fields ψi with charges −Qie (think

of several quarks with Qi = 2/3 or Qi = −1/3, several charged leptons with charge

Qi = −1 and several neutrino fields without electric charge, Qi = 0. Each of these

Dirac fields transforms according to

ψi −→ e−ieQiλ ψi (1.75)

(λ(x) is the local parameter of U(1) gauge transformations) under the gauge group of

the electromagnetic interaction, which is U(1). The quantum field theory Lagrangian

is then
L = −1

4
FµνF

µν +
∑

i ψi(iγ
µDµ −mi)ψi

= −1
4
FµνF

µν +
∑

i ψi(iγ
µ∂µ −mi)ψi

−eAµ
∑

iQi ψiγ
µψi .

(1.76)

The last line describes the fermion–photon interactions, proportional to the electric

charge Qi (in units of the fundamental proton charge e) of each fermion field. This

interaction is of the form

−eAµ (gauge potential) × Jµ (conserved current) ,

the conserved electromagnetic current collecting all fermion contributions,

Jµe.m. =
∑
i

Qi ψiγ
µψi (∂µJ

µ
e.m. = 0). (1.77)

The overall strength of the electromagnetic interaction is controlled by the constant e.

The quantum field theory perturbative expansion of quantum amplitudes is actually

an expansion is powers of the fine structure constant

α =
e2

4π
' 1

137
. (1.78)

In terms of Weyl spinors, theory (1.76) reads

L = −1
4
FµνF

µν +
∑

i[ψiL iγ
µDµψiL + ψiR iγ

µDµψiR]

−
∑

imi[ψiLψiR + ψiRψiL]
(1.79)

with

DµψiL = ∂µψiL + ieQiAµ ψiL , DµψiR = ∂µψiR + ieQiAµ ψiR . (1.80)
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1.4.1 Charge conjugation

Since the spinor field (with charge −eQ) describes the particle with charge eQ and the

antiparticle with charge −eQ, there should exist a transformation ψ −→ ψC such that

if the spinor field with charge eQ is a solution of Dirac equation,

iγµ∂µψ −mψ = eQAµγ
µψ,

the charge-conjugate spinor verifies the Dirac equation with opposite charge:

iγµ∂µψ
C −mψC = −eQAµψC . (1.81)

To find the transformation, one observes that for any representation of the γµ matrices,

there exists a matrix C such that

C−1γµC = −γµτ (and then: γ5
τ = C−1γ5C). (1.82)

In the Weyl representation (1.23), one can choose,

C = iγ2γ0, (1.83)

with C = −C−1 = −C† = C∗ = −Cτ . In the Majorana representation (1.24), since

−γµτ = γµ† = γ0γµγ0,

C = iγ0. (1.84)

Since the spinor ψ verifies −i∂µψγµ −mψ = eQAµψγ
µ, it also verifies

−iγµτ∂µψ
τ −mψτ = eQAµγ

µτψ
τ

=⇒ iγµC∂µψ
τ −mCψτ = −eQAµγµCψ

τ
.

(1.85)

We then define the conjugate spinor as

ψC = C ψτ = −γ0Cψ∗, ψ
C

= ψτC,

ψ = C ψC
τ
, ψ = ψC

τ C.
(1.86)

Since PL,R
∗ = PL,R

τ = C−1PL,R C and γ0 = −Cγ0∗C−1,

ψL,R = C ψCR,L
τ
, ψL,R = ψCR,L

τ C.

and, for anticommuting spinor fields,

iψRγ
µ∂µψR = −i[ψγµPR∂µψ]τ = −i∂µψτPRτγµτψ

τ

= i∂µψ
τC−1PRγ

µCψτ = −iψτC−1PRγ
µC∂µψ

τ
+ derivative

= iψ
C

Lγ
µ∂µψ

C
L + derivative.

(1.87)
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We can then always replace the kinetic Lagrangian of the right-handed spinor field

by the kinetic term of the charge-conjugate left-handed spinor. We will later on use

left-handed Weyl spinors only, with kinetic Lagrangian

L = iψLγ
µ∂µψL + iψ

C

Lγ
µ∂µψ

C
L −m(ψCL

τ C ψL + ψL C ψ
C

L

τ
) (1.88)

for a four-component massive Dirac spinor. Again, the mass term couples ψL and ψCL
and a single left-handed Weyl spinor only describes a massless spinor, except if ψ is a

Majorana spinor (without any charge),

ψ = ψC . (1.89)
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Chapter 2

On Lie groups and Lie algebras

This chapter gives a very elementary introduction to Lie groups and Lie algebras. It is

not meant to replace the substantial literature on this important chapter of mathemat-

ics, which includes many texts addressing the needs of physicists.1 It merely provides

minimal tools, introduced with little, if any, mathematical rigour.

2.1 Lie groups

In a field theory, the Noether theorem relates continuous symmetries of the action

and conserved quantities. This means that fields of the theory transform in some

representation of a Lie group of symmetries, and that these transformations leave

invariant the action defining the theory. A Lie group G has in general elements of the

form

U · U(αA) (2.1)

where · is the group product (group internal law), U belongs to a discrete subset,

U ∈ {I,U1, . . .} ⊂ G (the discrete set often only includes I, the unit element of the

group), and U(αA), A = 1, . . . , dimG, is an analytic function of a minimal set of

independent parameters αA. We define these parameters such that

U(αA = 0) = I. (2.2)

Then, U(αA) includes all elements of the group connected to the identity.2 Symboli-

cally, the group law reads

U(αA) · U(βB) = U(γC), (2.3)

1Refs. [1, 2, 4, 3, 5] specifically consider group theory in the context of particle physics theory.
More mathematically-oriented texts include refs. [6, 7, 8, 9].

2There is a continuous path in G, parameterized by αA, which links I to any U(αA).

21
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it defines the function γC(αA, βB), which is differentiable in a Lie group.

In gauge theories and in the Standard Model, the relevant gauge groups are (direct)

products of compact3 simple Lie groups and of U(1) factors. In the simplest case of

QED, it is the Lie group U(1). In the Standard Model, it is

G0 = SU(3)⊗ SU(2)⊗ U(1). (2.4)

Simple Lie groups are classified. There are four infinite series An, Bn, Cn, Dn of classical

groups and five exceptional groups E6, E7, E8, F4 and G2. The index is the rank of

the group: the dimension of the largest abelian subgroup U(1)n. To each entry in the

classification corresponds several real forms. One of them is compact, the others are

non-compact and differ by their maximal compact subgroup. For compact Lie groups,

we have:4

• An (n ≥ 1) corresponds to SU(n + 1), which can be represented by unitary

unimodular (n + 1)–dimensional matrices: U †U = I, detU = 1; the number of

parameters is dimG = (n+ 1)2 − 1.

• Bn (n ≥ 1) corresponds to O(2n + 1), which can be represented by orthogonal

real (2n + 1)–dimensional matrices: OτO = I; dimG = n(2n + 1). Requiring

detO = 1 leads to SO(2n+ 1).

• Cn (n ≥ 1) corresponds to Sp(2n), which can be represented by symplectic real

(2n)–dimensional matrices:

Oτη2nO = η2n, η2n =

(
0n In
−In 0n

)
;

dimG = n(2n+ 1).

• Dn (n ≥ 2) corresponds to O(2n), which can be represented by orthogonal real

(2n)–dimensional matrices: OτO = 1; dimG = n(2n − 1). Requiring detO = 1

leads to SO(2n). (The Lorentz group SO(1, 3) is an example of a non-compact

real form of D2.)

In this list, the realizations of the four classical series correspond to the fundamental

tensor representations, in terms of linear transformations (matrices) or real or complex

vector spaces of minimal dimensions. Each compact simple Lie group has an infinite

number of finite-dimensional unitary representations. They can be realized in terms

3The parameters αA take then values in a compact set, like for instance an angle in interval [0, 2π].
4The terminology used to characterize groups is as follows: U stands for unitary, O for orthogonal,

S for special (or unimodular) and Sp for symplectic.
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of linear transformations of a complex or real vector space. For instance, as stated

earlier, An or SU(n + 1) has a representation with complex dimension n + 1 in terms

of unitary unimodular transformations of Cn+1. Exceptional Lie groups E6, E7, E8, F4

and G2 however do not have an intuitive realization.

Unitary groups U(n), which can be represented by n×n unitary matrices U †U = In
are not simple:

U(n) = SU(n)× U(1).

Unitarity implies that the determinant of U is a phase, detU = ei∆. We can then write

U = ei∆/nIn · Ũ , det Ũ = 1.

The first factor is an element of U(1) and Ũ ∈ SU(n). For O(n) and Sp(2n) groups,

detO = ±1 and only elements with detO = 1 are in the part connected to the identity

element. Since similar arguments hold for exceptional groups, elements connected to

the identity of all simple Lie groups are necessarily unimodular.

The fact that Lie group elements connected to the identity U(αA) are analytic

functions of the parameters allows to write a Taylor expansion, which formally reads

U(αA) =
∑
n≥0

1

n!
αA1 . . . αAn

[
∂

∂αA1
. . .

∂

∂αAn
U(αB)

]
αA=0

≡ exp

[
αA

∂

∂αA

∣∣∣∣
αA=0

]
U(αB).

(2.5)

This expansion is the root of the relation between Lie groups and Lie algebras.

2.2 The Lie algebra of a Lie group

The elements connected to the identity I of a Lie group have a Taylor expansion (2.5)

in powers of the parameters. We may write, for small parameters,

U(αA) = I + i αATA +O(αAαB), TA = −i ∂

∂αA
U(αB)

∣∣∣∣
αB=0

. (2.6)

Comparing with expansion (2.5), we write the elements connected to the identity as

an exponential

U(αB) = eΛ(αB), Λ(αB) = iαA TA. (2.7)

The Λ(αB) belong to a vector space, the Lie algebra of the Lie group, and the set

{TA, A = 1, . . . , dimG} gives a basis of the Lie algebra. The basis elements TA are

the generators of the Lie algebra. They are not uniquely defined: any basis of the
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vector space provides a set of generators. Since, for all simple Lie groups, U(αA) is

unimodular, generators of the corresponding Lie algebras are always traceless,

detU(αA) = 1 ∀αA =⇒ TrTA = 0 ∀A. (2.8)

Writing U(αA) = exp(iαATA), we have used the convention (followed in general by

physicists5) that Lie algebras of compact groups have finite-dimensional unitary repre-

sentations with hermitian generators:

U(αA)−1 = e−iα
ATA = U(αA)† = e−iα

ATA
†

=⇒ TA = TA
† ∀A. (2.9)

Hence, to each Lie group corresponds a single Lie algebra, obtained from the Taylor

expansion of the part of the group connected to the identity. The converse is not true:

discrete elements of the Lie group [the elements U in eq. (2.1)] cannot in general be

written as the exponential of an element of the Lie algebra. Hence, the Lie algebra

does not always suffice to reconstruct, by exponentiation, the whole Lie group and

several Lie groups may have the same Lie algebra. However, Lie groups having the

same Lie algebra differ by discrete elements. These are not essential in the context

of field theories since Noether theorem only refers to continuous symmetries.6 For

instance, orthogonal groups O(n) and their unimodular versions SO(n) have identical

Lie algebras. For compact simple Lie groups, we have the following isomorphisms of

the corresponding Lie algebras:

A1 ∼ B1 ∼ C1, SU(2) ∼ SO(3) ∼ Sp(2),

B2 ∼ C2, SO(5) ∼ Sp(4),

D2 ∼ A1 × A1, SO(4) ∼ SU(2)× SU(2),

D3 ∼ A3, SO(6) ∼ SU(4).

(2.10)

And of course O(2), SO(2) and U(1) have the same one-dimensional Lie algebra.

The characterization of the generators of Lie algebras of simple compact classical

groups, in the fundamental matrix representations, is straightforward:

An : U †U = I =⇒ TA = TA
†,

Bn, Dn : OτO = I =⇒ TA = −TAτ ,

Cn : Oτη2nO = η2n =⇒ TA = η2nTA
τη2n.

(2.11)

5Mathematicians in general use the opposite convention, with antihermitian generators for compact
symmetries, and with U(αA) = exp(αATA).

6But discrete symmetries may have physical significance. For instance, parity P is not a symmetry
of weak interactions. It is an element of O(3) but, since its determinant is −1, it is not an element of
SO(3). Both are rotation groups with the same Lie algebra, but O(3) is not a symmetry of particle
physics, while SO(3) is, as part of the Lorentz group.
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These relations follow from expansion (2.6), for arbitrarily small values of the parame-

ters αA. They also illustrate how the use of the Lie algebra brings simplification: while

conditions defining Lie group elements are quadratic matrix equations, the correspond-

ing Lie algebra equations are linear.

2.2.1 Commutation relations, structure constants

The group internal law can be translated into an internal operation on the Lie algebra:

U(αA) · U(βB) = U(γC) =⇒ eiα
ATAeiβ

BTB = eiγ
CTC . (2.12)

The Baker-Campbell-Hausdorff formula indicates that

ea eb = ec, c = a+ b+
1

2
[a, b] +

1

12
[a, [a, b]]− 1

12
[b, [a, b]] + . . . , (2.13)

where [a, b] = ab−ba and the dots replace an infinite sum of higher-order commutators.

If [a, b] = 0, c = a+ b. The group law imposes then that if a = iαATA and b = iβBTB,

then c = iγCTC and this is obtained if

[TA, TB] = ifAB
C TC , ∀A,B. (2.14)

The real structure constants fAB
C = −fBAC completely encode the group law, up to

(discrete) elements of the Lie group which are not connected to the identity. Their

values depend on the choice of the generators, i.e. on the choice of a basis of the Lie

algebra. For instance, the group law (2.12) also indicates that

U(αA)−1 = U(−αA).

Then, generators −TA can be used instead of TA as a basis of the Lie algebra of a

given group and changing the sign of generators also changes the sign of the structure

constants.

The commutation relations (2.14), which define the internal operation of the Lie

algebra, trivially verify Jacobi identity

[[TA, TB], TC ] + [[TB, TC ], TA] + [[TC , TA], TB] = 0. (2.15)

The general definition of a Lie algebra is actually a vector space which admits a bilinear

internal operation verifying

[A,B] = −[B,A] (antisymmetry),

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi)
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for all its elements.7 The operation is not associative and in general not abelian. It can

be represented as the commutator [A,B] = AB − BA of two linear transformations,

but other realizations exist.

The following terminology applies:

• An abelian Lie algebra has vanishing structure constants: [A,B] = 0, ∀A,B.

• An invariant subalgebra K ⊂ L is preserved by the commutator: [A,B] ∈ K,

∀A ∈ K, ∀B ∈ L.

• For a given Lie algebra, the set of elements which commute with all elements of

the Lie algebra is necessarily an abelian subalgebra. It is the center of the Lie

algebra.

• A semi-simple Lie algebra does not have an invariant abelian subalgebra.

• A simple Lie algebra does not have an invariant subalgebra.

Semi-simple algebras are direct sums of simple algebras and, as stated earlier, simple

Lie algebras follow the same classification as simple Lie groups.

2.2.2 The Cartan-Killing metric

Inserting the commutation relations (2.14) into Jacobi identities (2.15) leads to

fAB
DfCD

E + fBC
DfAD

E + fCA
DfBD

E = 0 (2.16)

for all values of A,B,C,E.8 The symmetric Cartan-Killing metric is then defined by

gAB = −fACDfBDC = gBA. (2.17)

We then also introduce

CABC = fAB
D gDC . (2.18)

Using Jacobi identity,

CABC + CACB = fAB
D gDC + fAC

D gDB = −fABD fDEF fCFE − fACD fDEF fBFE

= fEA
D fDB

F fCF
E + fEA

D fDC
F fBF

E

+fBE
D fDA

F fCF
E + fCE

D fDA
F fBF

E = 0

7A statement equivalent to the antisymmetry condition is [A,A] = 0,∀A since this implies [A +
B,A+B] = [A,B] + [B,A] = 0.

8This also implies fABDfDCC = 0.
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and the constants CABC are antisymmetric in their three indices. For a general Lie

algebra, the Cartan-Killing metric may be degenerate (it obviously vanishes for an

abelian algebra). For example,

[A,B] = i C, [A,C] = [B,C] = 0

verifies Jacobi identity and defines then a three-dimensional Lie algebra with a single

nonzero structure constant fAB
C = 1 and with identically zero Cartan-Killing metric

and fABC .9 The metric gAB is non-degenerate (det g 6= 0) if and only if the Lie algebra

is semi-simple. It has then an inverse

gABgBC = δAC . (2.19)

2.3 Lie algebra representations

To define a representation R of the Lie algebra with commutation relations (2.14), we

need:

• A vector space V with (complex or real) dimension dimR and its linear transfor-

mations.

• A set {TRA } of linear transformations of the vector space verifying relations (2.14),

[TRA , T
R
B ] = ifAB

C TRC .

The representation R is reducible if there is a basis of V in which all generators TRA are

block-diagonal. If such a basis does not exist, it is irreducible. An irreducible represen-

tation (IR) is often simply characterized by its dimension dimR.10 The generators are

then realized as linear operators in V , as matrices with dimension dimR. Then, if φi,

i = 1, . . . , dimR, is a vector in V , its infinitesimal variation under the Lie algebra is

δφi = iαA(TRA )i
j
φj. (2.20)

Non-compact simple Lie algebras have a maximal compact subalgebra. In general,

we can split the generators according to {TRA } = {TRa , T̂Rk } with

TRa = TRa
†
, [TRa , T

R
b ] = ifab

c TRc , (compact subalgebra),

T̂Rk = −T̂Rk
†
, [T̂Rk , T̂

R
l ] = ifkl

a TRa , (non-compact generators),

[TRa , T̂
R
k ] = ifak

l T̂Rl .

(2.21)

9Since C commutes with all elements of the Lie algebra, it is a center element which can be
taken proportional to I. Replacing {A,B,C} by {Q,P, ~ I} leads then to [Q,P ] = i~ I which is the
(one-dimensional) Heisenberg algebra of quantum mechanics.

10But there are Lie algebras possessing several inequivalent IR with same dimensions.
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(Other commutators are zero11). The last equation indicates that non-compact gen-

erators transform in a representation of the compact subalgebra. Hermitian (anti-

hermitian) generators have real (imaginary) eigenvalues. One can then certainly choose

Tr(TRA T
R
B ) = T (R) ηAB, η =

(
Ip 0
0 −Iq

)
, p+ q = dimG, (2.22)

where p and q are respectively the number of compact and non-compact generators of

the Lie algebra. For a compact Lie algebra,

Tr(TRA T
R
B ) = T (R) δAB. (2.23)

The number T (R) is the quadratic (Dynkin) index of the representation.

In matrix notation, the Lie algebra variation (2.20) reads

δφ = iαATRA φ , δφ† = −iαAφ†TRA , δ(φ†φ) = 0 (2.24)

and also

δ(φ†TRA φ) = iαB φ†[TRA , T
R
B ]φ = iαB ifAB

C (φ†TRC φ). (2.25)

The conjugate quantities φ† transform in the representation R, conjugate to R, with

generators −TRA . Hence, φ†φ is an invariant and we will see in the next subsection that

the quantities φ†TAR φ transform in the adjoint representation of the Lie algebra.

In quantum field theories, the vector space V carrying the representation is a space

of scalar or spinor fields φi(x) with dimension i = 1, . . . , dimR. The fields transform

according to eqs. (2.20) or (2.24) under the Lie algebra of the symmetry group of the

theory.

2.3.1 The adjoint representation

Consider linear operators on the real vector space RdimG and define the following

generators (dimG× dimG matrices):

(TAdjGA )B
C

= −ifABC . (2.26)

Using Jacobi identities (2.16), the Lie algebra is verified:

[TAdjGA , TAdjGB ]C
D

= (TAdjGA )C
E

(TAdjGB )E
D − (TAdjGB )C

E
(TAdjGA )E

D

= −fACEfBED − fCBEfAED

= −fABEfCED = ifAB
E(T dimGE )C

D
.

(2.27)

11Notice that this algebra is compatible with real structure constants.
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The Lie algebra of a group G always admits then an adjoint representation with (real)

dimension dimAdjG = dimG, in terms of linear transformations of RdimG. The ma-

trix elements of its generators can be naturally defined from the structure constants

[eq. (2.26)]. Quantities xA ∈ RdimG transform in the adjoint representation if their Lie

algebra variation is

δxA = iαB(TAdjGB )A
C
xC = αB fBA

C xC , (2.28)

as in eq. (2.25). The equation CABC + CACB = 0 acquires then another significance:

CABC + CACB = fAB
D gDC + fAC

D gDB = i(TAdjGA )B
D
gDC + i(TAdjGA )C

D
gBD = 0.

Hence, the Lie algebra variation of the symmetric tensor gAB vanishes: the Cartan-

Killing metric is an invariant tensor.

For a compact Lie algebra, hermiticity of the generators corresponds to antisym-

metry

(TAdjGA )B
C

= −(TAdjGA )C
B ⇐⇒ fAB

C = −fACB (2.29)

and

gAB = −fACDfBDC = Tr(TAdjGA TAdjGB ) = T (AdjG) δAB. (2.30)

2.3.2 Indices, Casimir operators

In this paragraph we consider a generic representation R of a simple Lie algebra, with

generators TRA normalized with Tr(TRA T
R
B ) = T (R) ηAB, as in eq. (2.22). If the Lie

algebra is compact, ηAB = δAB. Then,

gAB = Tr(TAdjGA TAdjGB ) = T (AdjG) ηAB, gAB = T (AdjG)−1ηAB, ηAB = ηAB.

Define

I2(R) = ηAB TRA T
R
B . (2.31)

Since ηAB is an invariant tensor and since

fABC ≡ fAB
DηDC = T (AdjG)−1CABC (2.32)

is completely antisymmetric, we have:

[TRA , I2(R)] = iηBC
(
fAB

DTRDT
R
C + fAC

DTRB T
R
D

)
= ifABE η

BCηED
(
TRDT

R
C + TRC T

R
D

)
= 0.
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Since I2(R) commutes with all elements of the Lie algebra, it is a Casimir operator

which can be chosen (Schur’s lemma) proportional to the identity for any irreducible

representation R:

I2(R) = C(R) I. (2.33)

Taking the trace,

Tr I2(R) = dimR · C(R) = ηAB Tr(TRA T
R
B ) = dimG · T (R)

and then

C(R) =
dimG

dimR
T (R), C(G) ≡ C(AdjG) = T (AdjG). (2.34)

The number C(R) is the quadratic Casimir number of representation R, C(G) is the

quadratic Casimir number of the Lie algebra. The following useful properties hold:

• A representation R is reducible if it is the sum of irreducible representations12:

R = R1 ⊕R2 ⊕ . . .⊕Rk. Then,

T (R) = T (R1) + T (R2) + . . .+ T (Rk), (2.35)

since the generators can be chosen block-diagonal.

• With two representations R1 and R2 (on vector spaces V1 and V2), we can always

obtain another representation R = R1 ⊗ R2 in terms of linear transformations

acting on the tensor product V1 ⊗V2. Then, dimR = dimR1 · dimR2 = dimV1 ·
dimV2 and

T (R) = dimR1 · T (R2) + dimR2 · T (R1). (2.36)

The normalization of all T (R) follows from a single choice, for instance the choice of

the structure constants. A more common procedure is, for a given Lie algebra, to use

the index of the fundamental tensor representation to define the normalization. For

compact simple Lie algebras, we use the following conventions:

Lie algebra Fundamental IR Index Casimir number
G = SU(N) N T (N) = 1/2 C(SU(N)) = N
G = SO(N) N T (N) = 1 C(SO(N)) = N − 2
G = Sp(2N) 2N T (2N) = 1 C(Sp(2N)) = 2N + 2
G = E6 27 T (27) = 3 C(E6) = T (78) = 12
G = E7 56 T (56) = 6 C(E7) = T (133) = 18
G = E8 248 T (248) = 30 C(E8) = T (248) = 30
G = F4 26 T (26) = 3 C(F4) = T (52) = 9
G = G2 7 T (7) = 1 C(G2) = T (14) = 4

12In the sense of a (direct) sum of vector spaces. A basis of the vector space of R is the union of
basis of the vector spaces of R1, R2, . . . , Rk.
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The Dynkin index T (R) is then an integer or half an integer for all IR’s.13

This construction of the quadratic index and Casimir operator can be extended in

principle to higher orders: for the adjoint representation, the number of independent

Casimir operators equals the rank of the Lie algebra. Suppose that we have two tensors

UA...B and WC...D, transforming in the adjoint representation,

δ UAB...C = iαD
(
fDA

EUEB...C + fDB
EUAE...C + . . .+ fDC

EUAB...E

)
, (2.37)

and similarly for WC...D. Then, multiplying by the invariant ηAB creates invariant

“contractions” of indices. Consider for instance

UC...DE...F = ηAB UAC...DWBE...F .

Its Lie algebra variation is

δ UC...DE...F = ηAB δ(UAC...DWBE...F )

= iαG ηAB (fGA
H UHC...DWBE...F + fGB

H UAC...DWHE...F ) + . . .

= iαG fGAK η
ABηHK(UHC...DWBE...F + UBC...DWHE...F ) + . . .

The parenthesis is symmetric in HB while fGAK is antisymmetric in AK. Hence,

the explicit variation actually cancels and only the dots, which replace the variations

of tensor indices C . . .DE . . . F , survive. Tensors in the adjoint representation can

be obtained from symmetric traces of generators14 in, for instance, the fundamental

representation Rf :

d
(k)
A1...Ak

= Tr
(
T
Rf

(A1
T
Rf

A2
. . . T

Rf

Ak)

)
, d(k)A1...Ak = ηA1B1 . . . ηAkBk d

(k)
B1...Bk

. (2.38)

Generic Casimir operators for representation R are then of the form

Ik(R) = c d(k)A1A2...Ak TRA1
TRA2

. . . TRAk
, (2.39)

with a conventional constant c. The quadratic Casimir operator (2.31) uses d(2)AB =

ηAB.

At third order for instance, the structure constants are obtained from

Tr
(
TRA [TRB , T

R
C ]
)

= Tr(TRB [TRC , T
R
A ]) = Tr(TRC [TRA , T

R
B ])

= iT (R)fBC
DηDA = iT (R)fCA

DηDB = iT (R)fAB
DηDC = iT (R) fABC .

(2.40)

13In the literature, various conventions exist for the Dynkin index, which is then always proportional
to T (R).

14Antisymmetric traces can be reduced to lower orders using the Lie algebra commutation rules.
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Similarly, we may consider the symmetric trace:

dRABC = T (R)−1 Tr
(
TRA {TRB , TRC }

)
= T (R)−1 Tr

(
TRA T

R
B T

R
C + TRA T

R
C T

R
B

)
. (2.41)

The quantity dRABC is the anomaly coefficient of irreducible representation R. It is

particularly important in gauge field theories with Weyl fermion fields transforming

in representation R: a nonzero dRABC indicates the existence of a quantum anomaly

which destroys the consistency of the theory. Hence, absence of anomaly is required

and this amounts to choose only representations R for which all dRABC vanish. Since

gauge field theories have compact symmetry groups, generators are hermitian and dRABC
is real. However, if the representation is real, the generators are imaginary and then

dRABC = 0. One can show that only complex representations of SU(N), N ≥ 3, Lie

algebras can have nonzero anomaly coefficients. This can be understood from the

following observation: the coefficients dRABC are Clebsch-Gordan coefficients for

( AdjG ⊗ AdjG ⊗ AdjG )symmetric =⇒ 1

(1 is the singlet, one-dimensional representation with generators T 1
A = 0) or

( AdjG ⊗ AdjG )symmetric =⇒ AdjG.

All Lie algebras have an adjoint representation in the antisymmetric part of AdjG ⊗
AdjG and the structure constants are the Clebsch-Gordan coefficients. But only SU(N)

also admits a second adjoint representation, in the symmetric part of the product. For

SU(N) one then defines

dRABC = A(R) dABC , dABC = T (N)−1 Tr
(
TNA {TNB , TNC }

)
, (2.42)

where N is the fundamental representation (complex dimension N) and A(N) = 1.

Formulæ similar to (2.35) and (2.36) apply for the anomaly coefficients A(R), which

can also be obtained by calculating Tr(TRA
3
)/Tr(TNA

3
) for any given generator. Notice

that

ηABdRABC = 2T (R)−1 Tr
(
TRC η

ABTRA T
R
B

)
= 2

C(R)

T (R)
Tr(TRC ) = 0. (2.43)

In general, we may write:

TRA T
R
B = 1

2
{TRA , TRB }+ 1

2
[TRA , T

R
B ], [TRA , T

R
B ] = i fAB

CTRC ,

{TRA , TRB } = 2 T (R)
dimR

ηAB I +MR
AB + A(R)dABDη

DCTRC ,

MR
AB = MR

BA, TrMR
AB = 0, ηABMR

AB = 0,

Tr(TRAM
R
BC) = 0.

(2.44)
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Hermiticity of the generators implies MR
AB = MR

AB
†
.

For the fundamental representation N of SU(N), for instance, MR
AB vanishes: it

is an hermitian traceless N × N matrix, and then an element of the Lie algebra of

SU(N), which never verifies the last condition. Then,

{TNA , TNB } =
1

N
δAB I + dABCT

N
C (2.45)

since T (N) = 1/2 and A(N) = 1. All information on TNA T
N
B is in the structure

constants and in the tensor dABC .

For the adjoint representation of SU(2), for which (TAdjGA )B
C

= −iεABC , the index

is T (AdjG) = 2, dimR = 3 and dABC = 0,

(MAB)CD =
2

3
δABδCD − δACδBD − δADδBC . (2.46)

In general, for the adjoint representation, using A(AdjG) = 0,

{TAdjGA , TAdjGB }C
E

= −fACDfBDE−fBCDfADE = 2
C(G)

dimG
ηAB δ

E
C +(MAdjG

AB )C
E

(2.47)

with

(MAdjG
AB )C

E
= −fACDfBDE − fBCDfADE − 2

C(G)

dimG
ηAB δ

E
C . (2.48)

Then, firstly,

Tr(MAdjG
AB ) = (MAdjG

AB )C
C

= −fACDfBDC − fBCDfADC − 2C(G) ηAB = 0.

Secondly, since ηABfBC
DfAD

E = −C(G)δEC ,

ηAB(MAdjG
AB )C

E
= −ηABfBCDfADE − ηABfACDfBDE − 2C(G) δEC = 0.

Thirdly, with fAB
B = 0 and A(AdjG) = 0,

Tr
(
TAdjGF MAB

)
= (TAdjGF )E

C
(
fCB

DfAD
E + fCA

DfBD
E − 2 C(G)

dimG
ηAB δ

E
C

)
= −i

(
fFE

CfCB
DfAD

E + fFE
CfCA

DfBD
E
)

= Tr
(
TAdjGF {TAdjGB , TAdjGA }

)
= 0.

All information on TAdjGA TAdjGB is in the structure constants and eq. (2.47) is essentially

empty.
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2.3.3 The cases of U(N), SU(N) and U(1)

The Standard Model gauge group SU(3) × SU(2) × U(1) calls for a more detailed

discussion of these groups and Lie algebras. As explained in section 2.1, U(N) ∼
SU(N)× U(1).

Firstly, U(1) is the one-dimensional (dimG = 1) abelian group of phase rotations.

Structure constants vanish, C(U(1)) = 0, all its unitary representations have complex

dimension one. In other words, U(1) transformations of a set of fields can always be

written in a complex basis where

φi −→ eiαQi φi. (2.49)

The U(1) charges Qi are the eigenvalues of the single generator and α is the corre-

sponding group parameter. The quadratic Dynkin index for a field with charge Qi

is

T (Qi) = Q2
i (2.50)

since representations can be simply labelled by the value of the generator.

As mentioned earlier, unitary groups U(N) can be represented as N × N com-

plex matrices U verifying U †U = UU † = IN , where IN is the unit matrix in N complex

dimensions. Since U has 2N2 real matrix elements submitted to N2 conditions, the uni-

tary group U(N) has N2 continuous real parameters. For SU(N), the supplementary

condition detU = 1 (unimodularity) removes one parameter. Hence, the Lie algebra

of SU(N) has N2 − 1 generators. Unitarity and unimodularity of group elements re-

spectively imply hermiticity and tracelessness of the generators. Hence, a basis of the

Lie algebra of SU(N) in the fundamental representation is a basis of N ×N complex

hermitian traceless matrices. As mentioned in subsection 2.3.2, we use normalization

Tr(TNA T
N
B ) =

1

2
δAB, T (N) =

1

2
. (2.51)

The simplest case is SU(2). A basis for 2× 2 hermitian traceless matrices is given

by Pauli matrices

T 2
1 =

1

2

(
0 1
1 0

)
, T 2

2 =
1

2

(
0 −i
i 0

)
, T 2

3 =
1

2

(
1 0
0 −1

)
, (2.52)

which provide a set of generators for the fundamental representation of SU(2). With

normalization (2.51), the SU(2) Lie algebra is

[TA, TB] = iεABCTC , (2.53)
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which is the algebra of spin operators in quantum mechanics. Generators for the adjoint

representation have matrix elements (TA)B
C = −i εABC . The Casimir number of SU(2)

is then given by (−i)2εADCεBCD = 2δAB → C(SU(2)) = 2.

The theory of strong interactions, quantum chromodynamics (QCD), is based on the

symmetry group SU(3). A basis of generators for the fundamental three-dimensional

complex Lie algebra representation with normalization T (3) = 1/2 is provided by the

eight Gell-Mann matrices:15

λi = 1
2

 σi
0
0

0 0 0

 , i = 1, 2, 3, (SU(2) subalgebra),

λ4 = 1
2

 0 0 1
0 0 0
1 0 0

 , λ5 = 1
2

 0 0 −i
0 0 0
i 0 0

 ,

λ6 = 1
2

 0 0 0
0 0 1
0 1 0

 , λ7 = 1
2

 0 0 0
0 0 −i
0 i 0

 ,

λ8 = 1
2
√

3

 1 0 0
0 1 0
0 0 −2

 .

(2.54)

The conjugate representation 3 has generators of opposite signs. The adjoint represen-

tation has real dimension eight (it is denoted by “ 8 ”). Then:

3 ⊗ 3 = 1 ⊕ 8 −→ 3T (3) + 3T (3) = 6T (3) = 3 = T (1) +T (8) = 0 +C(G).

The Casimir number for the fundamental representation 3 is C(3) = 8T (3)/3 = 4/3.

Since [λ8, λi] = 0, the four matrices {λi, λ8} generate the maximal subalgebra

SU(2)× U(1). In addition,[
λi ,

(
0 ~A
~A† 0

)]
=

1

2

(
0 σi ~A

− ~A†σi 0

)
,

[
λ8 ,

(
0 ~A
~A† 0

)]
=

√
3

2

(
0 ~A

− ~A† 0

)
indicate that the two-component complex doublet ~A obtained by combining linearly

λ4, . . . , λ7 is a doublet (representation 2) of the SU(2) subalgebra, with charge
√

3/2

under λ8. In other words the embedding SU(3) ⊃ SU(2)× U(1) is defined by

3 = (2, 1
2
√

3
) + (1,− 1√

3
), 3 = (2,− 1

2
√

3
) + (1, 1√

3
),

3× 3 = 8 + 1 = (3, 0) + (1, 0) + (1, 0) + (2,
√

3
2

) + (2,−
√

3
2

)

=⇒ 8 = (3, 0) + (1, 0) + (2,
√

3
2

) + (2,−
√

3
2

).

15σi are Pauli matrices.
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The center of the group SU(3) has three elements. In the fundamental representa-

tion,

{I3 , e
2iπ/3 I3 , e

4iπ/3I3}. (2.55)

It is the discrete group Z3. The Z3 transformation of an irreducible representation

induces an additive triality number with value 0, 1 or −1 (modulo 3) attached to the

representation. It is 1 for the fundamental 3, −1 for its conjugate 3 and then 0 for

the invariant (singlet) 1 or for the adjoint 8. Quarks in representation 3 have then

triality 1, antiquarks in 3 have triality −1, and since confinement in QCD only allows

SU(3)–singlet bound states, hadrons have nq quarks and nq antiquarks with nq−nq = 0

(mod 3). The baryon number is B = (nq − nq)/3. It is an integer for all SU(3)–singlet

hadronic bound states.

Similar results hold for all SU(N) groups. They have center ZN with elements

exp(2ikπ/N) IN (k = 0, 1, . . . , N − 1) in the fundamental representation and each

irreducible representation carries then an additive N–ality number.



Chapter 3

Gauge theories

The concept of gauge invariance is fundamental in the construction of the Standard

Model of strong, weak and electromagnetic interactions of elementary particles. The

gauge principle prescribes that, given the gauge symmetry group and the transfor-

mations of the fields, the quantum field theory is uniquely defined. This prescription

imposes the existence of gauge bosons (photon, gluons, W± and Z0), the form of their

interactions with quarks and leptons, and also, since W± and Z0 are massive spin 1

fields, the existence of a spin zero particle commonly named “Higgs boson”. The pre-

diction of this scalar particle is associated to the mechanism of spontaneous symmetry

breaking used to give masses to W± and Z0 (see chapter 4). Hence, all information in

the construction of the theory is algebraic.

In chapter 1, as a simple example, we have considered quantum electrodynamics,

in which the gauge symmetry is abelian. The gauge group U(1) has one parameter and

the theory includes one gauge field Aµ(x) describing the massless photon. The photon

does not have any charge and only interacts with charged particles.

A field theory with a non-abelian gauge symmetry group is called a Yang-Mills

theory, or simply a gauge theory. The transition from abelian to non-abelian gauge

symmetry is not straightforward and the aim of this chapter is to obtain the most

general gauge theory Lagrangian which can be quantized in perturbation theory. This

is only possible if the gauge symmetry is a compact Lie group. Hence, in this chapter,

generators are hermitian and the antisymmetric structure constants fABC [defined in

eq. (2.32)] are equal to the “true” structure constants fAB
C . We will only use fABC in

all equations.

37
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3.1 Kinetic Lagrangian

To formulate the principle of gauge invariance, we first consider a classical field theory

describing real scalar fields ϕi(x) and spinor fields ψI(x) without masses and interac-

tions. The kinetic Lagrangian only includes propagation terms depending on deriva-

tives of the fields. The resulting field equations (Euler-Lagrange equations) should be

the massless Klein-Gordon equation for scalars and Dirac equation for spinors. Since

left-handed (ψIL) and right-handed (ψIR) Weyl spinors separately transform under the

Lorentz group, they are independent fields in the massless theory:

L0 =
1

2
(∂µϕ

i)(∂µϕi) + iψLIγ
µ∂µψ

I
L + iψRJγ

µ∂µψ
J
R. (3.1)

The numbers of scalar, left-handed spinor and right-handed spinor fields will be denoted

by Ns, NL and NR. In principle, NL and NR could be different. The field equations

are

2ϕi = iγµ∂µψ
I
L = iγµ∂µψ

I
R = 0 . (3.2)

As observed earlier1, right-handed Weyl spinors can be replaced by left-handed (charge

conjugate) spinors and we may then choose to work with left-handed (or right-handed)

spinors only:

( ψIL , ψIR ) −→ ( ψIL , ψC IL ).

The kinetic Lagrangian density has a large continuous symmetry. Firstly, the kinetic

term of scalar fields is invariant under transformations

ϕi −→ ϕi ′ = Oi
jϕ

j,
Ns∑
k=1

Ok
iO

k
j = δij. (3.3)

The Ns × Ns matrix O is real and orthogonal, OτO = I, the symmetry group is then

O(Ns). Then, working with left-handed spinors only, transformations

ψIL −→ ψIL
′
= U I

Jψ
J
L, (U †)IJU

J
K = δIK (3.4)

leave the Lagrangian (3.1) unchanged. These transformations belong to the U(NL)

group of chiral transformations, acting on left-handed massless Weyl spinors.

To introduce gauge invariance, we postulate that a subgroup of this global2 sym-

metry is turned into a local symmetry of the Lagrangian density. More precisely, we

1Paragraph 1.4.1, eq. (1.88) with m = 0.
2A global symmetry has parameters which do not depend on the space-time point.
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require that transformations

ϕj −→ ϕj ′ =
(
eiα

AT s
A

)j
k
ϕk,

ψJL −→ ψJ ′L =
(
eiα

AT `
A

)J
K
ψKL ,

ψJR −→ ψJ ′R =
(
eiα

AT r
A

)J
K
ψKR ,

(3.5)

with parameters αA depending on the space-time point

αA −→ αA(x),

are gauge symmetries of the theory. The elements of the gauge group have being defined

from its Lie algebra, with generators T sA, T `A and T rA for respectively the representations

of real scalar fields, left-handed and right-handed spinors. The (compact) Lie algebra

is

[T ]A, T
]
B] = ifABCT

]
C , ] = s, ` ou r. (3.6)

Since scalar fields are real, generators T sA are imaginary and antisymmetric.

3.2 Gauge fields and covariant derivatives

Since

(∂µϕ
j)′ =

(
eiα

AT s
A

)j
k
∂µϕ

k +

[
∂µ

(
eiα

AT s
A

)j
k

]
ϕk,

(∂µψ
J
L)′ =

(
eiα

AT `
A

)J
K
∂µψ

K
L +

[
∂µ

(
eiα

AT `
A

)J
K

]
ψKL ,

(∂µψ
J
R)′ =

(
eiα

AT r
A

)J
K
∂µψ

K
R +

[
∂µ

(
eiα

AT r
A

)J
K

]
ψKR ,

(3.7)

the kinetic Lagrangian (3.1) is not gauge invariant: to restore the symmetry, the sec-

ond terms need to be compensated. This is achieved by introducing one gauge field3

AAµ (x) for each independent transformation and then one gauge field for each generator

(hence the index A). Transformations of these gauge fields are then derived from the

requirement that covariant derivatives

Dµϕ
j = ∂µϕ

j − iAAµ (T sA)jkϕ
k,

Dµψ
J
L = ∂µψ

J
L − iAAµ (T `A)JKψ

K
L ,

Dµψ
J
R = ∂µψ

J
R − iAAµ (T rA)JKψ

K
R ,

(3.8)

3Also named gauge potentials, by analogy with the four-vector of potentials in Maxwell theory.
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transform in the same way4 as the fields themselves. We then need

Dµϕ
j −→ Dµϕ

j ′ =
(
eiα

AT s
A

)j
k
Dµϕ

k,

Dµψ
J
L −→ Dµψ

J ′
L =

(
eiα

AT `
A

)J
K
Dµψ

K
L ,

Dµψ
J
R −→ Dµψ

J ′
R =

(
eiα

AT r
A

)J
K
Dµψ

K
R .

(3.9)

We first consider infinitesimal transformations. For scalar fields,

δϕi = iαA(T sA)ijϕ
j,

δ∂µϕ
i = iαA(T sA)ij(∂µϕ

j) + i(∂µα
A)(T sA)ijϕ

j,

δDµϕ
i = iαA(T sA)ijDµϕ

j

+iϕj{(∂µαA)(T sA)ij − (δAAµ )(T sA)ij − iAAµαB([T sA, T
s
B])ij}.

To cancel the last line, we need∑
A

(δAAµ )T sA =
∑
A

(
∂µα

AT sA + AAµ
∑
B,C

fABC α
BT sC

)
.

Since generators are normalised by

Tr(T sAT
s
B) = T (s) δAB, (3.10)

we obtain
AAµ −→ AAµ + δAAµ ,

δAAµ = ∂µα
A +

∑
B,C

fABC A
B
µα

C .
(3.11)

Of course, this expression does not depend on the representation of scalar fields. We

would have obtained the same transformation of gauge fields by considering left-handed

or right-handed fermions.

The same argument applied to the general, non infinitesimal, case of transforma-

tions (3.5) leads to∑
A

AA ′µ T ]A = eiα
BT ]

B [i∂µ +
∑
A

AAµT
]
A]e−iα

CT ]
C , ] = s, ` or r, (3.12)

in matrix notation (with a sum on indices B and C). Again, eq. (3.12) imposes the

same transformation of gauge fields for TA = T sA, T `A or T rA. It reduces to (3.11) if

parameters αA are infinitesimal and to first order in these αA.

4Hence the terminology “covariant”.
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According to transformations (3.9), kinetic terms of the Lagrangian density are

gauge invariant if derivatives ∂µ are replaced by the appropriate covariant derivative

Dµ. We then find that

L0 =
1

2
(Dµϕ

i)(Dµϕi) + ψLJ iγ
µDµψ

J
L + ψRJ iγ

µDµψ
J
R (3.13)

is gauge invariant and contains scalar–gauge fields and fermion–gauge fields interac-

tions. This Lagrangian does not however include propagation terms for the gauge

fields: it does not depend on derivatives ∂µA
A
ν . The next step is then to construct the

gauge-invariant kinetic Lagrangian density of gauge fields.

3.3 Gauge curvature, gauge kinetic terms

To construct gauge kinetic terms, we first introduce the gauge curvature5

FA
µν = ∂µA

A
ν − ∂νAAµ +

∑
BC

fABC A
B
µA

C
ν . (3.14)

Since the structure constants fABC are antisymmetric, FA
µν = −FA

νµ, its infinitesimal

gauge transformation is

FA ′
µν = FA

µν +
∑
B,C

fABC F
B
µνα

C . (3.15)

To derive this variation, Jacobi identity∑
B

(fACBfBDE + fADBfBEC + fAEBfBCD) = 0,

is used. The quantity

−1

4
FA
µνF

Aµν , (3.16)

is then gauge invariant since FA
µνδF

µν A = fABCF
A
µνF

µν BαC = 0. It is the Yang-Mills

Lagrangian describing the propagation and interactions of non-abelian gauge fields.

A matrix notation is often useful. Take an arbitrary set of generators {TA} and

define

Aµ = AAµ TA, Fµν = FA
µν TA, α = αA TA. (3.17)

The matrix of gauge curvatures is then

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] (3.18)

5Also named field strength.
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and gauge variations are
δAµ = ∂µα + i [α,Aµ],

δFµν = i [α, Fµν ].
(3.19)

According to eq. (2.28), gauge curvatures transform in the adjoint representation of

the gauge Lie algebra. In addition, the variation of gauge potentials includes a specific

nonlinear term ∂µα which also exists in the abelian case.

3.4 Gauge coupling constants

Interactions involving gauge fields included in (3.16) and (3.13) have a strength char-

acterized by gauge coupling constants. In general, the gauge group G has the stucture

of a product G = G1 × G2 × . . . =
∏

aGa. Each factor Ga is either simple or U(1).

For instance, the gauge group of the Standard Model is SU(3)× SU(2)× U(1). Two

generators TA and TB taken in two different factors Ga commute and fABC = 0 for all

generators TC in G. Suppose that we substitute

AAµ −→ gAAAµ , (gA : nonzero real numbers)

(no sum on A) in covariant derivatives and in gauge curvatures. And also

FA
µν −→ gA

[
∂µA

A
ν − ∂νAAµ +

∑
BC

(gA)−1gBgCfABCA
B
µA

C
ν

]
≡ gAFA

µν

(no sum on A). In order that gauge transformation (3.15) stays true, we need that

gA = gB = gC ⇐⇒ fABC 6= 0. (3.20)

This condition implies that gauge invariance only allows one coupling constant ga for

each factor Ga in the gauge group. The number of parameters included in gauge field

interactions in (3.16) and (3.13) is then equal to the number of simple or U(1) factors

in the gauge group.

3.5 Gauge-invariant kinetic Lagrangian

To summarize, if the gauge group is G =
∏

aGa, the part of the gauge-invariant

Lagrangian density which depends on derivatives of the fields is given by

Lkin. = −1

4
FA
µνF

Aµν +
1

2
(Dµϕ

i)(Dµϕi) + ψLJ iγ
µDµψ

J
L + ψRJ iγ

µDµψ
J
R. (3.21)
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It includes all terms necessary for the propagation of spin 0, 1/2 and 1 fields (or more

precisely of helicities 0, ±1/2 and ±1), as well as all interaction terms involving gauge

fields. Covariant derivatives are

Dµϕ
j = ∂µϕ

j − i
∑
A

gAAAµ (T sA)jkϕ
k,

Dµψ
J
L = ∂µψ

J
L − i

∑
A

gAAAµ (T `A)JKψ
K
L ,

Dµψ
J
R = ∂µψ

J
R − i

∑
A

gAAAµ (T rA)JKψ
K
R ,

(3.22)

and gauge curvatures read

FA
µν = ∂µA

A
ν − ∂νAAµ + gA

∑
BC

fABCA
B
µA

C
ν . (3.23)

Gauge coupling constants gA verify (3.20). Finally, infinitesimal transformations are

given by (3.5) and by

δAAµ = (gA)−1∂µα
A +

∑
B,C

fABC A
B
µ α

C ,

δFA
µν =

∑
B,C

fABC F
B
µν α

C .
(3.24)

Gauge coupling constants are dimensionless numbers. In fact, since action S =∫
d4xL is dimensionless, L has dimension four (in energy units) and it then follows from

Lkin. that the so-called canonical dimensions of fields ϕi, AAµ and ψIL,R are respectively

1, 1 and 3/2.

The coherence rules of the quantum field theory allow to add to this kinetic La-

grangian various terms without derivatives ∂µ of the fields. They should not depend

on gauge fields AAµ . The rules for these terms can be stated as follows:

• All terms should be gauge invariant.6

• All terms should have dimension four.

• The previous condition should not be achieved using parameters with (strictly)

negative dimension.

Violating these rules leads to a non-renormalizable theory: the classical Lagrangian

cannot be quantized, it does not admit any sensible perturbation theory.

6And of course Lorentz invariant.
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Allowed terms fall in two categories. Firstly, mass terms which are quadratic in

scalar and fermion fields. They contribute to the Euler-Lagrange equations by terms

linear in the fields. Secondly, terms cubic or quartic in the fields contribute to field

equations by nonlinear terms and describe interactions of scalar and fermion fields.

The conditions imposed by gauge invariance are simply obtained using the infinites-

imal transformations

δϕj = iαA(T sA)jkϕ
k,

δψJL = iαA(T `A)JKψ
K
L , δψLJ = −iαAψLK(T `A)KJ ,

δψJR = iαA(T rA)JKψ
K
R , δψRJ = −iαAψRK(T rA)KJ .

(3.25)

3.6 Mass terms

These contributions to the Lagrangian are quadratic in scalar and spinor fields:

Lm. = Lm.s. + Lm.f.,

Lm.s. = −1
2
(m2)ijϕiϕj,

Lm.f. = −(M)IJψLIψ
J
R − (M †)IJψRIψ

J
L.

(3.26)

The matrix m2 is real and symmetric. Its eigenvalues are the (masses)2 of the scalar

fields. Invariance under infinitesimal gauge transformations (3.25) gives the conditions

(m2)kj(T sA)ik + (m2)ik(T sA)jk = 0,

(M)IJ(T rA)JK − (T `A)IJ(M)JK = 0
(3.27)

on the mass matrices. In matrix notation,

T sA(m2) + (m2)T sA
τ = [T sA,m

2] = 0, M T rA − T `AM = 0, (3.28)

since T sA is antisymmetric and imaginary. Hence,

• Masses of scalar fields are constant in each irreducible representation of the gauge

group.

• Nonzero fermion masses require the existence of a multiplet of left-handed and

right-handed fermions in the same representation, in other words, Dirac spinors

ψI = ψIL + ψIR in this representation are required. The exception would be a

Majorana spinor in a real representation of the gauge group.7

7Reality of the representation implies that the particle and the antiparticle have the same trans-
formations.
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A mass term for gauge fields, which would take the form

1

2
M2

ABA
A
µA

µB,

is clearly forbidden by invariance under gauge transformations (3.24). To each gauge

symmetry corresponds then a massless gauge boson.

3.7 Yukawa interactions

The most general fermion–scalar interaction is of the form

LY uk. = λi
K
J ϕ

i(ψLKψ
J
R) + (λi

K
J )∗ϕi(ψRJψ

K
L )

= 1
2
Ai

K
J ϕ

i(ψKψ
J) + 1

2
Bi

K
J ϕ

i(ψKγ5ψ
J),

(3.29)

with Ai
K
J = λi

K
J + (λi

J
K)∗ and Bi

K
J = −λiKJ + (λi

J
K)∗. Since ψKψ

J is hermitian, the

“scalar” couplings are hermitian:

(Ai
K
J )∗ = Ai

J
K .

In contrast, “pseudoscalar” couplings verify

(Bi
K
J )∗ = −Bi

J
K ,

a consequence of the antihermitian property of ψKγ5ψ
J . Gauge invariance requires

λj
K
J (T sA)ji − λi

M
J (T `A)KM + λi

K
M(T rA)MJ = 0. (3.30)

The canonical dimension of ϕi(ψLKψ
J
R) is four and Yukawa couplings λi

K
J are then

dimensionless numbers.

3.8 Scalar interactions

Cubic or quartic scalar interaction terms are

∆s(ϕ
i) = −1

3
αijk ϕ

iϕjϕk − 1

4
βijkl ϕ

iϕjϕkϕl. (3.31)

The coupling constants αijk and βijkl are real and symmetric under permutations of

their indices. They are constrained by gauge invariance, which requires

∂

∂ϕi
∆s(ϕ

j)δϕi = 0 −→ ∂

∂ϕi
∆s(ϕ

j)(T sA)ikϕ
k = 0
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for all values of the fields and of A, i.e.

0 = αljk(T
s
A)li + αilk(T

s
A)lj + αijl(T

s
A)lk,

0 = βmjkl(T
s
A)mi + βimkl(T

s
A)mj + βijml(T

s
A)mk + βijkm(T sA)ml ,

(3.32)

for all values of i, j, k, l. While coupling constants βijkl are dimensionless, parameters

αijk have dimension one (in energy units).

Usually, all scalar terms without derivative are collected in the scalar potential 8

V (ϕi) =
1

2
(m2)ijϕ

iϕj +
1

3
αijkϕ

iϕjϕk +
1

4
βijklϕ

iϕjϕkϕl. (3.33)

The scalar potential plays a central role in spontaneous symmetry breaking9.

3.9 The complete Lagrangian density

We can now write the most general Lagrangian density describing scalar fields (spin

or helicity 0), spinor fields (spin 1/2 or helicity ±1/2) and vector fields (helicity ±1)

admissible in the framework of quantum field theory. It is the sum of the gauge

invariant kinetic Lagrangian (3.21), mass terms (3.26), Yukawa interactions (3.29) and

scalar interactions (3.31):

L = Lkin. + Lm.f. + LY uk. − V (ϕi). (3.34)

This theory is completely determined by:

1. The gauge group (the local symmetry group), which also defines the structure

constants fABC and the number of gauge coupling constants gA.

2. The representation of scalar fields ϕi (i.e. the choice of scalar generators T sA).

3. The representation of spinor fields ψIL and ψJR (i.e. the choices of generators T `A
and T rA).

The choices of the gauge group and of the scalar representation are free. Consistency

of the quantum field theory requires that the representation of the spinor fields is such

that the anomaly coefficient [eq. (2.41)] vanishes. Explicitly, anomaly cancellation

requires

d`ABC = drABC ,

d`ABC = T (`)−1 Tr(T `A{T `B, T `C}), drABC = T (r)−1 Tr(T rA{T rB, T rC}).
(3.35)

8Notice that the Lagrangian density includes then −V (ϕi).
9See chapter 4.
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This condition is in particular trivially verified if the representations of left-handed and

right-handed spinor fields are identical (T `A = T rA). In this case, the gauge theory can

be formulated in terms of Dirac fermions, it is free of anomalies and gauge interactions

respect parity invariance. This is the case of quantum chromodynamics (QCD, strong

interactions) and of QED. But anomaly-cancellation also allows different representa-

tions (T `A 6= T rA): this is the case in the Standard Model of strong and electroweak

interactions. Gauge interactions may then violate parity, as do weak interactions.

At this stage, scalar and fermion masses, if allowed by gauge invariance [i.e. if

allowed by conditions (3.27)] are free parameters. Similarly, Yukawa couplings and

scalar interactions are free parameters. Gauge symmetry predicts that gauge fields are

massless, but we will see in the next chapter that this theory can display spontaneous

symmetry breaking in its scalar sector, generating masses for some of the gauge fields.

In the Standard Model of strong and electroweak interactions, this mechanism is at

the origin of the masses of gauge bosons W± and Z0.
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Chapter 4

Spontaneous symmetry breaking

A quantum field theory of spin one fields only exists if each spin one field is associ-

ated with a gauge symmetry. Gauge invariance implies then that the field is massless,

describing two states with helicities ±1. This agrees with the needs of quantum electro-

dynamics (a massless photon) and of quantum chromodynamics (eight massless gluons

mediating strong interactions). It is however not appropriate for weak interactions

which require massive fields describing W± and Z0 spin one bosons.

The description of Z0 and W± interactions in the framework of quantum field

theory calls for a generalization of gauge theories admitting massive vector fields. This

generalization is based on the phenomenon of spontaneous symmetry breaking, which

uses two fundamental results, Goldstone theorem, which applies to continuous global or

local symmetries of a field theory, and the Higgs mechanism which occurs when gauge

symmetries are spontaneously broken. In addition to the generation of massive spin

one fields, spontaneous breaking of gauge symmetries also predicts the appearance of

elementary particles with zero spin called Higgs bosons.

4.1 Goldstone theorem

A free real scalar field is a solution of Klein-Gordon equation (2 + m2)ϕ = 0, which

follows from the Lagrangian

Lfree =
1

2
(∂µϕ)(∂µϕ)− m2

2
ϕ2. (4.1)

It can be written as the wave packet1

ϕ(x) =

∫
d3k

(2π)32ωk
[a(k)e−ikx + a∗(k)eikx], (4.2)

1The integration measure d3k/(2ωk) is Lorentz invariant since the four vector k is ‘on-shell”,
k2 = m2.

49
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with wave vector kµ = (ωk, ~k), ωk =
√
m2 + ~k2. If the mass m2 vanishes, the scalar

field admits a constant zero mode, the contribution to expansion (4.2) of ~k = 0. This

is an arbitrary number which is the vacuum expectation value (v.e.v.) of the field,2

〈ϕ(x)〉 = v. (4.3)

If the mass is not zero, there is a gap: ω2
k ≥ m2 > 0 and 〈ϕ(x)〉 = 0. An interacting

scalar has Lagrangian3

Lscal. =
1

2
(∂µϕ)(∂µϕ)− V (ϕ), (4.4)

the field equation is

2ϕ = −∂V
∂ϕ

, (4.5)

and a zero mode solution ϕ(x) = 〈ϕ(x)〉 = v corresponds to the minimum of the scalar

potential4

∂V

∂ϕ

∣∣∣∣
ϕ=v

= 0. (4.6)

For a free, massless field, V ≡ 0 and v is arbitrary. Hence, the choice of the parameters

in the potential decides if the scalar field has a zero or nonzero vacuum value.

Since the field ϕ is a Lorentz scalar, its expectation value v does not break relativis-

tic invariance. It is then an implicit parameter of the field theory allowed by special

relativity. It does not play any role for a free massless field (since the Lagrangian

only depends on ∂µϕ in this case), but it has physical implications in the interacting

theory. In particular, since scalar fields in general transform under continuous symme-

tries of the Lagrangian, a nonzero expectation value v breaks in general some of these

symmetries.

Let us then consider a set of Ns real scalar fields ϕi(x), i = 1, . . . , Ns. The La-

grangian density of the field theory is

Lscal. =
1

2
(∂µϕ

i)(∂µϕi)− V (ϕi), (4.7)

the scalar potential V (ϕi) being a polynomial of fourth order (or less) in the scalar

fields. It can be seen as a general gauge field theory with gauge group G in the limit

where all spinor and vector fields vanish, a limit consistent with the field equations and

the symmetries of the theory. The kinetic term of theory (4.7) is invariant under global

2A constant ϕ is solution of the Klein-Gordon equation if m2 = 0.
3All other fields in the theory are assumed zero. We nevertheless use a partial derivative with

respect to ϕ since other fields are in general present.
4Classically, the minimum of the scalar potential determines the ground state of the theory. In the

quantum field theory, the ground state is called the vacuum state and quantum corrections apply to
the potential and to its ground state.
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O(Ns) rotations and we assume that the potential is invariant under transformations

of a global symmetry group Gscal. ⊂ O(Ns). Small variations

δϕi = iαA (T sA)ij ϕ
j , (4.8)

where matrices T sA are generators of the Lie algebra of Gscal. in the representation of

the scalar fields5, leave then V invariant:

δV (ϕi) = iαA
∂V

∂ϕi
(T sA)ijϕ

j = 0. (4.9)

Since the Lie group G of the underlying gauge theory is certainly a symmetry of the

scalar Lagrangian, G ⊂ Gscal., but Gscal. could be in principle larger than G.

Field (Euler-Lagrange) equations of theory (4.7),

2ϕi +
∂V

∂ϕi
= 0, (4.10)

admit constant solutions ϕi(x) = ci if[
∂V

∂ϕi

]
ϕi=ci

= 0. (4.11)

Classically, these constant solutions are stable under small perturbations of the scalar

fields if the potential has a local minimum: V (ci + δϕi) ≥ V (ci) for arbitrary small

variations δϕi. It is the case if the matrix of second partial derivatives[
∂2V

∂ϕi∂ϕj

]
ϕk=ck

has only positive or zero eigenvalues. In the quantum field theory, the global minimum

of the potential only is a stable state, the vacuum state for which 〈ϕi(x)〉 = vi. The

vacuum state must exist and the scalar potential V (ϕi) must then be bounded below.

Since the potential is a fourth-order polynomial, this is in general a condition on quartic

terms in V .

Eq. (4.9) indicates that for all values ϕi of the scalar fields ϕi,

∂V

∂ϕi
(T sA)ijϕ

j = 0, A = 1, 2, . . . (4.12)

for all generators of the Lie algebra of Gscal.. The derivative with respect to ϕj is

∂2V

∂ϕi∂ϕj
(T sA)ikϕ

k +
∂V

∂ϕi
(T sA)ij = 0, ∀A, ∀j. (4.13)

5We consider a compact symmetry Gs and generators are then hermitian, T sA = T sA
† and imaginary

(since scalar fields are real).
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Then, at the vacuum state ϕi = vi,(
∂V

∂ϕj

)
ϕi=vi

= 0,

(
∂2V

∂ϕi∂ϕj

)
ϕi=vi

(T sA)ikv
k = 0, ∀A, ∀j. (4.14)

If the vacuum state of the theory is nontrivial, 〈ϕi〉 = vi 6= 0, we can divide the

generators of the symmetry algebra in two categories denoted by T̃ sA and /T sA and

defined by
i : (T̃ sA)ij v

j = 0,

ii : (/T sA)ij v
j 6= 0.

(4.15)

The vacuum state is left invariant by the symmetries T̃ sA, which generate the algebra of a

subgroup H of Gscal..
6 Generators /TAs correspond to symmetries of Gscal. spontaneously

broken at the vacuum state. They are symmetries of the Lagrangian and of the field

equations which are not respected by the vacuum state. The spontaneous breaking can

be characterized by the breaking pattern

G −→ H, H ⊂ G.

The invariance of the scalar Lagrangian under the transformations of Gscal.,

ϕi → ϕi
′
= U i

j ϕ
j, (4.16)

where U = exp(iαAT sA) implies that if vi is a vacuum state of the theory, then

vi
′
= U i

j v
j (4.17)

is also a vacuum state for all U ∈ Gscal.: if some symmetry is spontaneously broken

(and then in general vi 6= vi
′
) the vacuum state is continuously degenerate. If UH is an

element of H, (UH)ijv
j = vi, and then

(UUHU
−1)ijv

′j = v′
i
. (4.18)

For each U , the vacuum expectation values vi
′

are left invariant by UUHU
−1 and the

little group of vi
′

is then H again: all degenerate vacua have the same little group H.

Notice that if the scalar fields include one or several fields which are invariant under

Gscal., these directions can have nonzero vacuum value without breaking any symmetry.

A theory in which the vacuum state is 〈ϕi〉 = vi can always be reformulated in

terms of fields

ϕ̃i = ϕi − vi, (4.19)

6H is called the little group or stabilizer of the vacuum expectation value vi.
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for which the vaccum state is 〈ϕ̃i〉 = 0. The Lagrangian density is

Lscal. =
1

2
(∂µϕ̃

i)(∂µϕ̃i)− Ṽ (ϕ̃i), Ṽ (ϕ̃i) = V (ϕ̃i + vi). (4.20)

The potential also reads

Ṽ (ϕ̃i) = 〈V 〉+

[
∂V

∂ϕi

]
ϕk=vk

ϕ̃i +
1

2

[
∂2V

∂ϕi∂ϕj

]
ϕk=vk

ϕ̃i ϕ̃j

+ cubic and quartic terms,

(4.21)

where 〈V 〉 = V (vi). The first term, the constant 〈V 〉, is without physical significance:

we can always choose the energy of the vacuum state to be zero. The second term

linear in ϕ̃i vanishes by eq. (4.14). The quadratic term includes the matrix of the

(squared) masses of the new scalar fields:

(M2
ϕ̃)ij =

[
∂2V

∂ϕi∂ϕj

]
ϕk=vk

. (4.22)

Since vi corresponds to the global minimum of V , this mass matrix has only positive

or zero eigenvalues.

The second eq. (4.14) indicates however that the scalar fields

(/T sA)ij v
j (4.23)

are massless. There is one such massless scalar for each spontaneously broken symme-

try.

We have then obtained Goldstone theorem [10, 11]:

To each continuous (global or local) symmetry of the action which is not a symme-

try of the vacuum state corresponds a massless (real) scalar field, the Goldstone

boson of the spontaneously broken symmetry.

The explicit form of the potential, as function of the scalar fields ϕi, has not been used in

the derivation of Goldstone theorem. In a quantum field theory, the quantum-corrected

potential function is in general different from the classical potential appearing in the

Lagrangian (which is a fourth order polynomial). As a result, the unbroken symmetry

group H (the little group of the vacuum state) of the quantum theory could be different

from the classical little group. But in any case, to each broken symmetry corresponds

an exactly massless spin zero state.

The simplest example of a spontaneously broken continuous symmetry uses a com-

plex scalar field φ with scalar potential

V (φ, φ†) =
λ

2

(
φ†φ− µ2

2λ

)2

= −µ
2

2
φ†φ+

λ

2
(φ†φ)2 +

µ4

8λ
. (4.24)
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The real constant λ is positive in order to have a bounded potential and we choose

µ2 > 0. The potential is invariant under phase rotations of φ:

φ −→ φ′ = eiαQφ, (4.25)

The invariance group is thenGscal. = U(1). An infinitesimal variation is δφ = iαQφ, the

number Q being the single generator of the Lie algebra and α the arbitrary parameter.

The minimum of the potential is reached if 〈φ†φ〉 = µ2/2λ, or if

〈φ〉 = eiβ v, v =
√
µ2/2λ, β real.

The action of Gscal. = U(1) changes the value of β, which encodes the degeneracy of

the vacuum state. Symmetry U(1) is then spontaneousy broken. Next, we introduce

the new field φ̃ for which the minimum of the potential corresponds to 〈φ̃〉 = 0,

φ̃ = φ− eiβv,

and we split φ̃ in two real fields:

φ̃(x) =
1√
2
eiβ [A(x) + iB(x)].

Finally, the action of U(1) symmetry (4.25) indicates that we may freely choose β = 0.

In terms of the fields A and B, the potential writes:

V (A,B) =
1

2
µ2A2 +

λ√
2
v A(A2 +B2) +

λ

8
(A2 +B2)2, v =

√
µ2/2λ. (4.26)

It describes a real field A with mass µ interacting with a massless real field B, the

Goldstone boson of the spontaneousy broken U(1) symmetry.

4.2 Spontaneous breaking of gauge symmetries

According to Goldstone theorem, spontaneous breaking of continuous symmetries pre-

dicts the existence of massless spin zero bosons, which are not seen in Nature. It turns

out that the spontaneous breaking of local continuous symmetries (gauge symmetries)

predicts instead that the associated gauge fields acquire masses. The mechanism pro-

vides then a description of massive spin one particles. The Goldstone bosons are not

“independent” particles: they are the third components with helicity zero of the spin

one states. In a particular gauge (called unitary gauge), the Goldstone bosons are

actually absorbed by the massive gauge fields. Even if this phenomenon is commonly

known under the name “Higgs mechanism”, it has been first described in three articles
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by Brout and Englert [12], Higgs [13] and Guralnik, Hagen and Kibble [14]7. This

section describes in general terms the spontaneous breaking of gauge symmetries. It

is then applied to massive W± and Z0 bosons in the Standard Model, in the example

presented in next section.

To describe the Higgs mechanism, we need (real) scalar fields ϕi, the gauge bosons

AAµ of the gauge symmetry and their Lagrangian. Spinor fields do not play any role

and are omitted. According to the results of previous chapter, the field theory is

L = Lgauge +
1

2
(Dµϕ

i)(Dµϕi)− V (ϕi), (4.27)

with

Lgauge = −1

4
FA
µνF

Aµν , FA
µν = ∂µA

A
ν − ∂νAAµ + gA

∑
BC

fABCA
B
µA

C
ν ,

and8

Dµϕ
i = ∂µϕ

i − i
∑
A

gAAAµ (T sA)ijϕj. (4.28)

Suppose as before that the potential leads to the vacuum state 〈ϕi〉 = vi 6= 0. In-

troducing new shifted fields with zero vacuum expectation values ϕ̃i = ϕi − vi, the

Lagrangian density becomes

L = Lgauge +
1

2
(Dµϕ̃

i)(Dµϕ̃i)− V (ϕ̃i + vi)

+
1

2

∑
A,B

gAgB[vi(T sAT
s
B)ijvj]AAµA

B µ − i
∑
A

gAAAµ (Dµϕ̃i)(T sA)ijvj,
(4.29)

since Dµv
i = −i

∑
A g

AAAµ (T sA)ijvj. Two new contributions quadratic in the fields are

produced: firstly, gauge boson mass terms of the form

1

2
MAB

1 AAµA
B µ, MAB

1 = gAgB[vi(T sAT
s
B)ijvj]. (4.30)

Secondly, propagation terms mixing gauge fields AAµ and scalar fields:

−i
∑
A

gAAAµ (∂µϕ̃i)(T sA)ijvj = i
∑
A

gA(∂µAAµ )ϕ̃i(T sA)ijvj + ∂µ(. . .). (4.31)

Clearly, only gauge fields associated to broken symmetries for which (/T sA)ijvj 6= 0

contribute to expressions (4.30) and (4.31).

7The article by Brout and Englert was submitted and published first. It is cited in Refs. [13, 14].
Some prototype incomplete versions appeared earlier, for instance in a first article by Higgs [15].

8Scalar fields are real. Generators T sA are then imaginary and antisymmetric.
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Theory (4.27) is invariant under gauge transformations

ϕi −→ ϕ′
i

= [eiα
AT s

A ]ijϕj,

∑
A

gAAAµT
s
A −→

∑
A

gAA′
A
µT

s
A = eiα

BT s
B

[
i∂µ +

∑
A

gAAAµT
s
A

]
e−iα

CT s
C .

(4.32)

However, decomposition ϕi = ϕ̃i + vi and the Lagrangian density (4.29), which depend

on the vacuum vi, are not explicitly invariant: since the original theory (4.27) is gauge-

invariant, we can use any gauge to define the shifted scalar fields ϕ̃i and express the

theory in terms of these new fields.

To identify the physical content of the theory and also eliminate the mixing term

(4.31), it is convenient to use another parameterization of the scalar fields. We have N

real scalar fields ϕi, we assume that the Lie algebra of the gauge group G has dimension

M and that the vacuum vi breaks p symmetries. There is then p Goldstone bosons and,

necessarily, p < N . The p vectors (/T sA)ijvj, A = 1, . . . , p, generate the Goldstone bosons

in the N -dimensional space of the scalar fields. We may then represent Goldstone

bosons by

[exp (iξA(x)/T sA)]ijvj,

with p fields ξA(x). The N − p other fields are then included in expression

ϕi = [exp (iξA(x)/T sA)]ij
(
hj(x) + vj

)
, (4.33)

where the vector hi(x) contains N − p real fields, orthogonal to the directions of Gold-

stone bosons,

hi(x)(/T sA)ijvj = 0. (4.34)

Note that the vector h(x)vi is always a particular solution of this equation since gen-

erators are antisymmetric. In addition, since the generators T̃ sA of the little group H

(unbroken gauge symmetries) leave the vacuum vi invariant, (T̃ sA)ijvj = 0, they also

leave h(x)vi invariant: there exists always at least one real field in hi(x) (and then

N −p > 0) and this field is invariant under the little group H of unbroken symmetries.

Expression (4.33) can be directly introduced in the gauge-invariant Lagrangian

density (4.27). But it can also be simplified using a gauge transformation (4.32) with

parameters

αA(x) = −ξA(x) (4.35)

whenever A corresponds to a broken symmetry, T sA = /T sA, and αA = 0 for generators

of the little group H of vi. Then,

ϕi −→ ϕ′
i

= [exp (−iξA/T sA)]ijϕj = hi(x) + vi.
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Expressed in terms of ϕ′i, the Lagrangian density does not depend on Goldstone bosons

which were eliminated by the gauge choice:

Lunit. = −1

4
FA
µνF

Aµν +
1

2
MAB

1 AAµA
B µ

+
1

2
(Dµh

i)(Dµhi)− V (hi + vi),

(4.36)

the gauge boson mass matrix being

MAB
1 = gAgB[vi(/T sA/T

s
B)ijvj], (4.37)

as in (4.30). The mixing term is absent due to equation (4.34). This choice corresponds

to the unitary gauge. The theory describes then a set of p massive spin one vector

fields corresponding to the spontaneously broken gauge symmetries, interacting with

the massless gauge bosons of the little group H and with a multiplet of scalar Higgs

bosons hi which includes at least one field. These scalar fields hi transform in some

representation of H. The structure of all interactions is completely determined by the

original gauge theory and by the vacuum state vi. Gauge interactions are fixed by the

structure constants and the generators of G and gauge boson masses are related (by

the diagonalization of the mass matrix MAB
1 ) to the values of 〈ϕi〉 = vi, and then to

the parameters of the scalar potential which determines the vacuum state.

Another derivation of the unitary gauge amounts to eliminate the mixing term

(4.31) by a gauge transformation of the gauge fields associated to the broken sym-

metries. The Lagrangian density (4.29) contains in particular the following quadratic

terms9:

X ≡ 1

2

[
(∂µϕ̃

i)(∂µϕ̃i) +MAB
1 AAµA

B µ − 2igAAAµ (∂µϕ̃i)(/T sA)ijvj
]

= −1

2

[
gAAAµ (/T sA)ijvj + i(∂µϕ̃)i

] [
gBAB µ(/T sB)ikvk + i(∂µϕ̃)i

]
.

Compare the last expression with gauge transformation (4.32) multiplied by vj, to first

order since we only consider here quadratic terms of the Lagrangian:

gAA′
A
µ (/T sA)ijvj = gAAAµ (/T sA)ijvj + (∂µα

A)(/T sA)ijvj.

We then choose parameters such that αA(/T sA)ijvj − iϕ̃i = −ihi, where the fields hi

represent the N − p components of ϕ̃i left unchanged by the gauge transformation:

ϕ̃i = hi − iαA(/T sA)ijvj, hi(/T sA)ijvj = 0.

9Genrators are antisymmetric.
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These equations correspond to the unitary gauge (4.35) applied to the parameterization

(4.33) of fields to first order, and to the orthogonality condition (4.34). We then arrive

at

X = −1

2

[
gAA′

A
µ (/T sA)ijvj

] [
gBA′

B µ
(/T sB)ikvk

]
+

1

2
(∂µh

i)(∂µhi)

=
1

2
MAB

1 A′
A
µA
′B µ +

1

2
(∂µh

i)(∂µhi).

The unitary gauge is particularly useful to the identification of the physical states of

the theory. It is however at the origin of important complications if it would be adopted

to quantify the theory and develop perturbation theory. More convenient, less intuitive

gauges are actually chosen to compute quantum probabilities.

Group theory provides a simple necessary condition if one wishes to break a certain

gauge group G into a subgroup H. The gauge fields of the theory always transform

in the adjoint representation AdjG of G. Scalar fields used to induce spontaneous

symmetry breaking G→ H transform in some representation Rs, in general reducible,

of G. But H ⊂ G and any representation of G decomposes as a sum of representations

of H. In particular, one can write

AdjG = AdjH ⊕RH , RH = RH,1 ⊕ . . .⊕RH,k.

Gauge bosons made massive by the Higgs mechanism transform in representation RH

of H and the Goldstone bosons absorbed in the massive spin one fields should then

transform in the same representation RH . Then, in order to break G into H using

scalar fields in representation Rs, it is necessary that10:

1. Representation Rs contains a direction invariant under H: this is the direction

of the vacuum state ϕi = vi.

2. Representation Rs, when decomposed in representations of H, includes the rep-

resentation RH of the massive gauge fields and of the Goldstone bosons.

In other words, the decomposition of Rs in representations of H should be of the form

RS = 1⊕RH ⊕Rothers ,

where 1 is the direction of the vacuum vi. The Higgs bosons transform in representation

1 ⊕ Rothers of H (and Rothers may be absent, as in the following examples). This is

however not sufficient: we still have to find a scalar potential such that its global

minimum is precisely in the direction vi, invariant under H.

10These necessary conditions do not make sense if the little group H is trivial, in which case all
gauge symmetries are spontaneously broken.
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As a first example, consider again the spontaneous breaking of symmetry U(1), as

in previous section, but now with gauge invariance. As before, the scalar potential is

V =
λ

2

(
φ†φ− µ2

2λ

)2

,

leading to 〈φ〉 = eiβv, v =
√
µ2/2λ. Instead of writing φ = 1√

2
eiβ[A + iB + v], we use

the parameterization

φ(x) = eiσ(x)+iβ

[
1√
2
h(x) + v

]
,

with two real scalar fields σ and h. Since the scalar potential only depends on φ†φ, σ

is massless: it is the Goldstone boson. We then change the gauge,

φ(x) −→ φ′(x) = e−iσ(x)−iβφ(x) =
1√
2
h(x) + v,

to go to the unitary gauge which only contains the Higgs boson h, with mass µ. And

the gauge boson of symmetry U(1) acquires a mass M = gQv, according to gauge

transformation (4.25).

4.3 An example: the complex scalar doublet

This example corresponds to the scalar sector of the Standard Model. It is used to

give masses to three gauge fields, W+, W− and Z0. Hence, we need to spontaneously

break three gauge symmetries and produce three Goldstone bosons. Since there is in

addition at least one Higgs boson, we need at least four real scalar fields. We then

consider the minimal case, which uses a doublet of complex scalar fields

H =

(
H1

H2

)
, H† = (H†1 H†2 ), (4.38)

with scalar potential

V (H,H†) = −µ2(H†H) +
λ

2
(H†H)2. (4.39)

In this expression,

µ2 > 0, λ > 0, µ2, λ real,

and H†H = H†1H1 +H†2H2. The minimum of V is at

〈H†H〉 = µ2/λ. (4.40)
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The potential (4.39) is invariant under the transformations of the group11 SU(2) ×
U(1)Y [which is equivalent to U(2)]. These symmetries act on doublet H with

U(1)Y : H −→ H ′ = eiαYH,

SU(2) : H −→ H ′ = UH,
(4.41)

where the (2× 2) matrix U is unitary, U †U = I2, and unimodular (detU = 1). We can

write

U = eiw
aTa , Ta =

1

2
σa, a = 1, 2, 3, (4.42)

matrices σa denoting the three Pauli matrices. Generators of the SU(2) Lie algebra

verify

[Ta, Tb] = iεabcTc, εabc = −εbac = εcab, ε123 = 1.

The real constant Y is the generator of U(1)Y . since its value is arbitrary, we choose

Y = −1

2
(4.43)

and scalars are then in representation (2,−1/2) of SU(2)× U(1)Y .

In fact, the potential (4.39) has a symmetry larger than SU(2)× U(1)Y : if we use

real fields ϕ1 = ReH1, ϕ2 = ImH1, ϕ3 = ReH2, ϕ4 = ImH2, then H†H =
∑4

i=1 ϕ
2
i

which is invariant under rotations O(4) ∼ SU(2) × SU(2) of the four real fields. We

will however only consider the subgroup SU(2)× U(1)Y , which will be promoted to a

gauge symmetry, as in the Standard Model.

At this stage, SU(2)×U(1)Y transformation parameters α and wa can be constant

or local. The minimum condition (4.40) is of course invariant under the full symmetry

group and the vacuum state is continuously degenerate. One can then choose

〈H〉 =
1√
2

(
v
0

)
, v =

√
2µ2

λ
, (4.44)

and all degenerate vacuum states are then obtained by acting on 〈H〉 with an SU(2)×
U(1)Y transformation (4.41) with constant parameters.

The vacuum state (4.44) spontaneously breaks SU(2)× U(1)Y . One easily verifies

that the residual symmetry leaving 〈H〉 invariant is

exp (iw[T3 + Y ]) 〈H〉 = 〈H〉, T3 + Y =

(
0 0
0 −1

)
. (4.45)

The little group of 〈H〉 is then U(1)Q, generated by

Q = T3 + Y. (4.46)

11Index Y identifies the group U(1)Y in contrast with another U(1) group which appears below.
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The action of Q on the components of H is

U(1)Q : H1 −→ H1, H2 −→ e−iwH2.

Three symmetries are then spontaneously broken anf the symmetry breaking pattern

is

SU(2)× U(1)Y −→ U(1)Q. (4.47)

The four real components of H split in three Goldstone bosons and one massive state,

the Higgs boson.

We next couple the complex scalar doublet to SU(2) × U(1)Y gauge fields. In so

doing, SU(2)×U(1)Y becomes a local, gauge symmetry. We must introduce gauge fields

W a
µ , a = 1, 2, 3, for SU(2), and Bµ for U(1)Y and also two gauge coupling constants g

and g′ for respectively SU(2) and U(1)Y . The gauge-invariant Lagrangian density is

L = −1

4
W a
µνW

aµν − 1

4
BµνB

µν + (DµH)†(DµH)− V (H,H†), (4.48)

and, using the results of section 3.2,

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ,

DµH = ∂µH − i
2
gW a

µσaH − ig′BµY H, (Y = −1
2
).

(4.49)

The form of the covariant derivative of H follows from gauge transformation (4.41).

With vacuum expectation value 〈H〉, the particle content of the theory is most easily

identified using the unitary gauge which, according to the previous section, is obtained

with the parameterization

exp
[
iξ1(x)T1 + iξ2(x)T2 + iξ(x)(T3 − Y )

]
〈H〉,

of the Goldstone fields, the three broken symmetries being generated by T1, T2 and

T3 − Y =

(
1 0
0 0

)
.

We then write

H =
1√
2

exp
[
iξ1(x)T1 + iξ2(x)T2 + iξ(x)(T3 − Y )

]( h(x) + v
0

)
, (4.50)

with a real scalar field h(x) which will be the single Higgs boson of the theory. Verifying

orthogonality condition (4.34) requires care since we use here complex fields and non-

antisymmetric generators. In our case, the condition becomes

hi(x)(/T sA)ij〈H∗j 〉 = [hi(x)(/T sA)ij〈H∗j 〉]† h1(x) = h(x), h2(x) = 0.
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And it is actually verified:

〈H〉τT1

(
h(x)

0

)
= 〈H〉τT2

(
h(x)

0

)
= 0,

while

〈H〉τ [T3 − Y ]

(
h(x)

0

)
= vh(x)

and h(x) is a real field. It follows from (4.50) that the complex doublet reduces to

Hunit. =
1√
2

(
h(x) + v

0

)
(4.51)

in unitary gauge. The Lagrangian density in this gauge is obtained by simply replacing

H by Hunit. in the gauge invariant expression (4.48). In order to diagonalize mass terms

of gauge fields, we use the following redefinitions:

W+
µ = 1√

2
(W 1

µ − iW 2
µ), W−

µ = 1√
2
(W 1

µ + iW 2
µ) = (W+

µ )†,

Zµ = cos θWW
3
µ − sin θWBµ, Aµ = sin θWW

3
µ + cos θWBµ.

(4.52)

The mixing angle θW is defined by

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (4.53)

In the Standard Model, θW is Weinberg angle, or the weak mixing angle. With defini-

tions
Aµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂νZµ,

W+
µν = ∂µW

+
ν − ∂νW+

µ , W−
µν = ∂µW

−
ν − ∂νW−

µ ,

we then obtain:

Lunit. = −1

4
AµνA

µν − 1

4
ZµνZ

µν − 1

2
W+
µνW

−µν

+
1

2

g2 + g′2

4
v2ZµZ

µ +
g2

4
v2W+

µ W
−µ

+
1

2
(∂µh)(∂µh)− µ2h2 −

√
λ

2
µh3 − λ

8
h4 +

µ4

2λ

+Lint..

(4.54)

The first line includes propagation terms for gauge fields, the second the masses of the

gauge bosons associated with broken symmetries and the third is the Lagrangian of
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the Higgs boson field. Finally, Lint. includes the gauge interactions:

Lint. = −ig sin θW

[
(Aµ + cotgθW Zµ)(W+

µνW
− ν −W−

µνW
+ ν)

−(Aµν + cotgθW Zµν)W
+µW− ν

]
+(g sin θW )2

[
(AµW

+µ)(AνW
− ν)− (AµA

µ)(W+
ν W

− ν)

+cotgθW

{
(ZµW

+µ)(AνW
− ν) + (ZµW

−µ)(AνW
+ ν)

−2(AµZ
µ)(W+

ν W
− ν)
}

+cotg2θW

{
(ZµW

+µ)(ZνW
− ν)− (ZµZ

µ)(W+
ν W

− ν)
}]

−1

2
g2
[
(W+

µ W
−µ)2 − (W+

µ W
+µ)(W−

ν W
− ν)
]

+
g2

4
(h2 + 2vh)

[
W+
µ W

−µ +
1

2 cos2 θW
ZµZ

µ

]
.

(4.55)

The theory describes then:

• A massless gauge boson12 Aµ associated with the unbroken symmetry U(1)Q;

• A complex field and its conjugate, W−
µ and W+

µ , with spin one and mass

MW =
gv

2
. (4.56)

Under the exact (unbroken) gauge symmetry U(1)Q, their charge is13 Q = ±1;

• A field Zµ with spin one and mass

MZ =
1

2

√
g2 + g′2 v =

MW

cos θW
≥MW , (4.57)

invariant (neutral, without charge) under U(1)Q;

• A real scalar field h(x) invariant (neutral, without charge) under U(1)Q and with

mass

m2
h = 2µ2 = λv2 =

4λ

g2
M2

W , (4.58)

the Higgs boson of the theory.

12The photon field in the Standard Model, where Q is the generator of the electric charge.
13Since U(1)Y does not act on the gauge fields of SU(2), Y = 0 and Q = T 3 for these states.
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In expression (4.55), all gauge-boson interactions involving Zµ are controlled by the

coupling constant g cos θW . The field Aµ is the gauge field of the residual, unbroken

symmetry U(1)Q. Its gauge-boson inteactions are controlled by the coupling constant

g sin θW =
gg′√
g2 + g′2

.

In fact, all interactions of Aµ arise from contributions to gauge curvatures W a
µν of

combination

gW 3
µT3 = g sin θW (Aµ + cotgθWZµ)T3 = g sin θW (Aµ + cotgθWZµ)Q,

since Y = 0 for SU(2) gauge fields. The covariant derivative acting on Hunit. does

not depend on Aµ: the Higgs boson parallel to the direction of the vacuum state 〈H〉,
which exists in all theories with spontaneously broken symmetries, is necessarily neutral

under the whole unbroken gauge group which leaves 〈H〉 invariant. In our example,

there is a single Higgs boson.

The Lagrangian density defined by expressions (4.54) and (4.55) decribes in the

unitary gauge the contributions of the bosonic fields of the Standard Model. It will

then reappear in the next chapter, supplemented by the contributions of quarks and

leptons.
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The Standard Model

65





Chapter 5

Symmetries and Lagrangian

The Standard Model of Glashow [16], Salam [17] and Weinberg [18] describes strong,

weak and electromagnetic interactions of quarks and leptons. Its Lagrangian follows

the rules stated in chapter 3 and its precise structure is motivated by the observation

of many elementary physical processes. Almost all its predictions have been verified

with high to extremely high precision. The goal of this chapter is to construct the La-

grangian density of the Standard Model. A discussion of some of its phenomenological

implications can be found in chapter ??.

According to the gauge principle, choosing the gauge group and the gauge transfor-

mations of the spinor fields and of the scalar fields is sufficient to write the Lagrangian

density of the gauge theory, and then the dynamical equations for all fields of the

theory. The choice of the gauge group and some general properties of spinor fields

representations are suggested by phenomenological (deduced from experiments) con-

siderations:

1. As explained in section 1.4, electromagnetic intractions correspond to gauge in-

variance under phase rotations of spinor fields with electric charge eQ. The elec-

tromagnetic gauge symmetry is then U(1)Q (“Q” stands for the electric charge),

its gauge boson (the photon field) is massless and the U(1)Q symmetry is exact

(i.e. it is not spontaneously broken, which would give a mass to the photon).

The photon does not have a charge and it only interacts with charged particles

(the electromagnetic gauge group is abelian).

2. The theory of strong interactions of quarks is quantum chromodynamics (QCD).

Quarks exist in three colours on which act colour transformations. These trans-

formations are elements of the three-dimensional (fundamental) representation of

the colour gauge symmetry group SU(3). Since SU(3) is eight-dimensional, there

are eight gauge bosons called gluons. Since the QCD gauge group is non-abelian,

67
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gluons have a colour charge and self-interactions.

3. Both electromagnetic and strong interactions conserve parity symmetry. Hence

left-handed and right-handed charged and coloured spinor fields have identical

SU(3)× U(1)Q transformations.

4. Weak interactions are more subtle. For instance, beta decay of the neutron,

n → p+ e− νe, is a charged current weak interaction. At the level of quarks, the

process is

d −→ u+ e− + νe.

It is described by the exchange of a (virtual) spin-one boson W−, from the con-

version of quark d in u, and producing the leptonic pair e−+νe. Hence, charged-

current weak interactions “connect” particles with electric charges differing by

one unit (of the fundamental electric charge e). The associated gauge bosons

W± have then electric charge ±e: this implies that the gauge theory description

of weak and electromagnetic interactions cannot be dissociated, hence the name

electroweak interactions. The electroweak gauge group is then SU(2)L × U(1)Y

and U(1)Q is a subgroup of SU(2)L × U(1)Y .

5. Since any U(1)Q subgroup of SU(2)L × U(1)Y is necessarily of the form Q =

αT3 + Y with eigenvalues ±1, 0 for T3 in the adjoint representation of SU(2)L,

the unit charge Q = ±1 of W± indicates that

Q = T3 + Y. (5.1)

Gauge bosons have Y = 0 (abelian gauge fields have zero U(1) charge) and the

four gauge bosons in SU(2)L × U(1)Y have then electric charges Q = 1,−1, 0, 0.

The four gauge bosons are then identified with the photon γ, the two bosons

W± mediating charged-current weak interactions and the electrically-neutral bo-

son Z0 which mediates neutral-current weak interactions. The terminology weak

isospin and weak hypercharge is used to indicate SU(2)L and U(1)Y respectively.

The values of the weak hypercharge Y will be non trivial for spinor and scalar

fields: they are chosen to match fermion and scalar electric charges.

6. The electroweak gauge group SU(2)L×U(1)Y is spontaneously broken into U(1)Q,

as in section 4.3, producing the masses of W± and Z0. Hence, the Standard model

includes at least a complex SU(2)L doublet of scalar fields, and it predicts the

existence of a massive spin zero particle, the Higgs boson.

7. Since electroweak gauge bosons do not have strong interactions, and since gluons

do not have electroweak interactions, the gauge group of the Standard Model is
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a product:

GSM = SU(3)× SU(2)L × U(1)Y . (5.2)

8. Charged-current weak interactions maximally break parity symmetry: gauge

bosons W± only interact with left-handed quark and lepton Weyl spinors. Hence,

left- and right-handed Weyl spinors have different transformation properties un-

der SU(2)L × U(1)Y and all quark and lepton mass terms (with an exception in

the neutrino sector) are then forbidden by gauge invariance. However, sponta-

neous symmetry breaking of GSM into SU(3)×U(1)Q implies, since the residual

unbroken symmetry corresponds to parity-conserving interactions, that quark

and lepton masses can be generated by the Higgs mechanism, in parallel with

weak gauge boson masses.

In contrast with electromagnetic interactions where electric charge conservation can

be directly observed, colour conservation can only be indirectly deduced from hadron

physics. Non-abelian gauge theories have two related properties: firstly, they are weak

in processes in which exchanged energies are large with respect to a certain charac-

teristic scale Λ. This is called asymptotic freedom, a property which is experimentally

verified in hard scattering processes. Secondly, the non-abelian force is strong in pro-

cesses with energies smaller than or similar to Λ. In particular, bound states are

always neutral under the non-abelian force. This is confinement. Then, all hadrons are

“colourless” and isolated quarks or coloured bound states do not exist. Hence, colour

conservation is not a straightforward feature in hadronic processes. Historically, quarks

were introduced to explain the hadronic spectrum. In terms of quark bound states,

mesons are qq states, baryons are qqq states and antibaryons qqq states. In particular,

to reconcile hadronic bound states with quantum mechanics of identical fermions, a

further quantum number of quarks, colour, was postulated to fully antisymmetrize the

quantum state of three identical quarks. The existence of mesons qq (and the absence

of qq or qq bound states) suggests a U(Nc) or SU(Nc) colour symmetry (Nc is the num-

ber of colours), while the existence of baryons made of three quarks points at SU(3)

(Nc = 3). Once SU(3) is then used as a gauge group, in the framework of QCD, various

hard scattering processes were used to confirm the postulate and to measure the scale

Λ.

5.1 Gauge group and gauge bosons

The gauge principle associates a gauge field with each local symmetry and then with

each generator of the gauge group. With gauge group SU(3) × SU(2)L × U(1)Y , the
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twelve gauge fields of the Standard Model are defined as:

SU(3) : AAµ , A = 1, . . . , 8, (gluons),

SU(2)L : W a
µ , a = 1, 2, 3,

U(1)Y : Bµ.

(5.3)

As already mentioned, the four gauge fields W a
µ , a = 1, 2, 3 and Bµ will describe,

after spontaneous symmetry breaking, electroweak gauge bosons W+, W−, Z0 and

the photon. According to eq. (3.14), the gauge curvatures appearing in the kinetic

Lagrangian of the gauge fields are

SU(3) : FA
µν = ∂µA

A
ν − ∂νAAµ + gs fABCA

B
µA

C
ν ,

SU(2)L : W a
µν = ∂µW

a
ν − ∂νW a

µ + g εabcW
b
µW

c
ν ,

U(1)Y : Bµν = ∂µBν − ∂νBµ.

(5.4)

The structure constants of SU(3) and SU(2)L are respectively denoted by fABC and

εabc. Under GSM = SU(3) × SU(2)L × U(1)Y , gauge fields transform in the following

representations:1

Gauge bosons Representation Adjoint repres. of Electric charges

AAµ (8,1, 0) SU(3) 0
W a
µ (1,3, 0) SU(2)L +1,−1, 0

Bµ (1,1, 0) U(1)Y 0

Gauge coupling constants gs (for quantum chromodynamics) and g (for weak isospin

SU(2)L) have been introduced following the procedure described in section 3.4. A

third gauge coupling constant g′, for weak isospin U(1)Y will appear later on. These

three parameters (one for each simple or U(1) factor in the gauge group) characterize

all gauge boson interactions.

5.2 Quarks and leptons

Spinor fields of the Standard Model describe quarks and leptons. They differ by their

transformations under the gauge group SU(3) × SU(2)L × U(1)Y and by their inter-

actions with the corresponding gauge bosons. Quarks have strong interactions, they

couple to gluons, while leptons only feel weak and electromagnetic forces.

We first briefly discuss parity and its violation in fermion interactions.

1In the table, 8 is the adjoint representation of SU(3), 3 is the adjoint representation of SU(2),
with T3 = +1, 0,−1 and 1 is the singlet, invariant representation. For U(1)Y , the U(1) charge is
indicated: gauge bosons never have U(1) charges since U(1) is abelian.
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5.2.1 Parity

Parity transformation P is (x0 = t, ~x) −→ (x0,−~x). In the Dirac operator,

γµ∂µ = γ0∂0 + ~γ · ~∇ −→ γ0∂0 − ~γ · ~∇ = γ0(γµ∂µ)γ0.

Hence, if ψ is a solution of Dirac equation,

ψP = γ0ψ

is a solution of Dirac equation in parity-transformed coordinates. But is ψ is a left-

handed (right-handed) Weyl spinor, then ψP is right-handed (left-handed). Hence, if

parity is a symmetry, left- and right-handed spinors have identical interactions. For

instance, consider the interaction of a gauge boson Aµ with a left-handed spinor. The

Lagrangian term is proportional to

Aµ(ψLγ
µψL) = Aµ(ψγµPLψ), PL =

1

2
(I + γ5)

Under parity, since gauge fields transform like coordinates, Aµ → (A0,− ~A), ψ → ψP =

γ0ψ and then

Aµ (ψLγ
µψL) −→ A0 (ψγ0γ0PLγ

0ψ)− ~A · (ψγ0~γPLγ
0ψ) = Aµ (ψRγ

µψR).

Parity conservation implies then that spinors of both chiralities have identical gauge

interactions. In other words, in a parity-conserving theory, Weyl spinors of both chi-

ralities transform in the same representations.2

5.2.2 Quark and lepton representations

Since weak interactions violate parity, it is then natural to discuss the gauge trans-

formations of Weyl spinors and it is simpler to use left-handed spinors only, turning

right-handed spinors into their charge-conjugate left-handed spinors3:

ψR −→ (ψR)c = Cγ0(ψ†R)τ = (ψc)L.

Since charge conjugation involves a hermitian conjugation, it also conjugates gauge

quantum numbers: it exchanges particles and antiparticles. We will then consider

left-handed components of quarks, antiquarks, leptons and antileptons.

Quarks and leptons are classified according to their gauge transformations, accord-

ing to their GSM representation. Experiments and phenomenology suggest three basic

rules:
2It is then simpler and sufficient to use Dirac spinors.
3Paragraph 1.4.1.
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1. Quarks have strong interactions, they are colour triplets, i.e. they transform in

representation 3 of SU(3). Antiquarks transform in the conjugate representation

3. Since leptons and antileptons do not feel strong interactions, they transform

in the trivial representation 1 of SU(3), in which all SU(3) generators are the

number zero.

2. Left-handed fermions (quarks and leptons) are SU(2)L doublets: they transfrorm

in representation 2 of SU(2)L. Left-handed antifermions (antiquarks and antilep-

tons), equivalent to right-handed fermions, are SU(2)L singlets.

3. The classification of fermions corresponds to a sequence of identical generations,

considering their SU(3) × SU(2)L × U(1)Y transformations. Generations differ

by quark and lepton masses (and mixing angles). Observation has revealed three

generations, and further generations (with light neutrinos as in the first three

generations) are excluded by particle physics and cosmology.

These empirical rules lead to the following classification:

Particle Field Representation Electric charges

Left-handed quarks ψ
(n) jα
Q (3,2, 1/6) 2/3, −1/3

Left-handed antiquarks ψ
(n)
Uc j (3,1,−2/3) −2/3

ψ
(n)
Dc j (3,1, 1/3) 1/3

Left-handed leptons ψ
(n)α
L (1,2,−1/2) 0, −1

Left-handed antileptons ψ
(n)
Ec (1,1, 1) 1

ψ
(n)
Nc (1,1, 0) 0

n = 1, 2, 3
j = 1, 2, 3
α = 1, 2

The notation is as follows: since all spinors are left-handed, the index L is systematically

omitted. Since fermions are classified in three identical generations, a generation index

n = 1, 2, 3 is introduced and in each generation fermions are characterized by indices

Q,U c, Dc, L, Ec, N c related to the weak hypercharge quantum number. Then index

j is an SU(3) (colour) index. A superscript j indicates representation 3 (quarks),

a subscript indicates the conjugate representation 3 (antiquarks). Finally, index α

indicates a SU(2) doublet representation 2. The precise identification of these spinor

fields with quarks u, d, s, c, b, t, and leptons e, µ, τ will be obtained below, after the full

theory has been constructed.

The last column in the table includes quantum numbers (i.e. representations) under

SU(3), SU(2)L and U(1)Y of each fermion field. It indicates, for instance, that the

left-handed quark doublet ψ
(n) jα
Q transforms as a colour SU(3) triplet (representation
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3), a SU(2)L doublet 2, and that its weak hypercharge is Y = 1/6:

δψ
(n) jα
Q = i ωA(T 3

A)jk ψ
(n) kα
Q + i ωa(T 2

a )αβ ψ
(n) jβ
Q +

1

6
i ω ψ

(n) jα
Q , (5.5)

for a transformation with infinitesimal parameters ωA, ωa and ω for respectively SU(3),

SU(2)L and U(1)Y . Or, similarly, for the left-handed antiquark U c in representation

(3,1,−2/3),

δψ
(n)
Uc j = −i ωA(T 3

A)kj ψ
(n)
Uc k −

2

3
i ω ψ

(n)
Uc j. (5.6)

With respect to transformation (5.5), the first negative sign is due to representation

3, instead of 3. By charge conjugation, the gauge variation of the right-handed quark

UR would then write

δψ
(n) j
U,R = i ωA(T 3

A)jk ψ
(n) k
U,R +

2

3
i ω ψ

(n) j
U,R . (5.7)

The representation is now (3,1, 2/3), which is the conjugate of (3,1,−2/3). Notice that

the right-handed neutrino described by spinor field ψ
(n)
Nc is gauge invariant, δψ

(n)
Nc = 0:

it does not feel strong or electroweak interactions and does not interact with gauge

bosons. It does however appear in Yukawa interactions with scalar fields and then in

neutrino masses.

Each generation of quarks and leptons in the Standard Model includes then sixteen

left-handed Weyl spinors.

5.2.3 Absence of chiral anomalies

We have mentioned in section 3.9 that if left-handed fermions transform in the repre-

sentation with generators T `A of the gauge group, consistency of the quantum theory

requires then that the numbers

d`ABC = T (`)−1 Tr
(
T `A{T `B, T `C}

)
vanish. To verify that this condition is indeed verified within each quark-lepton gener-

ation of the Standard Model, we need to study all possible choices of generators in the

symmetric trace. We use the notation:

Indices A,B or C: generators of SU(3);

Indices a, b or c: generators of SU(2)L;

Indice Q: generator of the electric charge.
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Since Q = T 3 + Y , using the weak hypercharge generator Y is not necessary. Some

conditions are trivially verified:

1. Generators of SU(2)L and SU(3) are traceless: d`aBC = d`aBQ = d`aQQ = d`Abc =

d`AQQ = 0.

2. Strong and electromagnetic interactions conserve parity: d`ABC = d`ABQ = d`QQQ =

0.

3. Since Tr(σa{σb, σc}) = 2δbc Tr(σa) = 0, d`abc = 0.

A single non-trivial condition remains then: d`abQ = 0. Under SU(2)L, fermions are

either doublets,

T 2
a =

1

2
σa, {T 2

a , T
2
b } =

1

2
δab I,

or singlets T 1
a = 0. Since d`abQ ∼ Tr(Q{T `a , T `b }), the condition d`abQ = 0 leads to∑

I

QI = 0, (5.8)

with index I running over left-handed fermions with weak isospin T3 = ±1
2

only. In

a generation of quarks and leptons, the leptonic contribution to the trace is −1 (the

charged lepton ψ
(n)
E,L). Quarks ψ

(n) j
U,L and ψ

(n) j
D,L contribute with

3

(
2

3
− 1

3

)
= 1,

with a factor 3 since each quark exists in three colours. Then, contributions of quarks

and leptons cancel each other and each generation is anomaly-free.

The absence of chiral anomaly, imposed by consistency of the relativistic quantum

field theory, is the only relation between quark and lepton properties present in the

Standard Model. With the sequential structure in identical generations of quarks

and leptons, it imposes the quantization of the weak hypercharge: if one normalizes

Y = −1/2 on leptonic doublets, then the hypercharge of quarks must be 1/6 to cancel

the anomaly with three colours. Similarly, if charged leptons have electric charge −1

(choice of normalization), then quarks have electric charges 1/6± 1/2 = 2/3 or −1/3.

5.3 Scalar fields

Since weak interactions are mediated by massive gauge bosons W± and Z0, scalar fields

must be introduced to break SU(2)L×U(1)Y into the electromagnetic gauge symmetry
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U(1)Q, Q = T3 + Y . With three broken symmetries and at least one physical Higgs

boson, the minimal choice is a complex SU(2)L doublet including an electrically neutral

field (which receives the vacuum expectation value breaking the symmetry). This last

condition fixes the weak hypercharge of the scalar doublet to Y = ±1/2. Hence, the

minimal choice used by the Standard Model has complex scalar fields Hα, α = 1, 2,

transforming under GSM in representation

(1,2,−1/2).

Its infinitesinal gauge transformations are

SU(3) : δHα = 0,

SU(2)L : δHα = i ωa(T 2
a )αβ H

β,

U(1)Y : δHα = −1
2
iωHα.

(5.9)

It is useful to define

H =

(
H1

H2

)
, H = iσ2H∗ =

(
H2∗

−H1∗

)
. (5.10)

In fact, since T 2
a = 1

2
σa and σa∗ = iσ2 σa iσ2, we obtain

SU(3) : δH
α

= 0,

SU(2)L : δH
α

= i ωa(T 2
a )αβ H

β
,

U(1)Y : δH
α

= +1
2
iωH

α
.

(5.11)

Quantum numbers of the conjugate H
α

are then

(1,2,+1/2).

The quantity

εαβH
α
Hβ = H1∗H1 +H2∗H2 = H†H, εαβ = −εβα, ε12 = 1,

is an invariant of GSM which will be useful in the construction of the Lagrangian

density. In fact, any invariant function of H and H is actually a function of this

unique invariant.

5.4 Covariant derivatives and Lagrangian density

According to the procedure described in sections 3.2 and 3.5, quantum numbers of

fermion and scalar fields allow to write their covariant derivatives4. For a multiplet

4See equation (3.22).
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of fields φ (spinors or scalars) in the representation (n3,n2, Y ) of GSM , the general

expression is:

Dµφ = ∂µφ− igsAAµ (Tn3
A φ)− ig W a

µ (Tn2
a φ)− ig′ Y Bµφ, (5.12)

with Tn3
A = 0 if the SU(3) representation is n3 = 1, Tn3

A = −T 3
A if n3 = 3 and Tn2

a = 0

if the SU(2)L representation is n2 = 1. It is admitted that (T 3
Aφ) and (T 2

a φ) include

the appropriate sum on SU(3) and SU(2)L indices. Explicitly, we obtain

Dµψ
(n) jα
Q = ∂µψ

(n) jα
Q − igsAAµ (T 3

A)jkψ
(n) kα
Q − igW a

µ (T 2
a )αβψ

(n) jβ
Q − 1

6
ig′Bµψ

(n) jα
Q ,

Dµψ
(n)
Uc j = ∂µψ

(n)
Uc j + igsA

A
µ (T 3

A)kjψ
(n)
Uc k + 2

3
ig′Bµψ

(n)
Uc j,

Dµψ
(n)
Dc j = ∂µψ

(n)
Dc j + igsA

A
µ (T 3

A)kjψ
(n)
Dc k −

1
3
ig′Bµψ

(n)
Dc j,

Dµψ
(n)α
L = ∂µψ

(n)α
L − igW a

µ (T 2
a )αβψ

(n)β
L + 1

2
ig′Bµψ

(n)α
L ,

Dµψ
(n)
Ec = ∂µψ

(n)
Ec − ig′Bµψ

(n)
Ec ,

Dµψ
(n)
Nc = ∂µψ

(n)
Nc ,

DµH
α = ∂µH

α − igW a
µ (T 2

a )αβH
β + 1

2
ig′BµH

α,

DµH
α

= ∂µH
α − igW a

µ (T 2
a )αβH

β − 1
2
ig′BµH

α
.

(5.13)

With these expressions, the Lagrangian density of the Standard Model is of the

form

L = Lcin. + LY uk. − V (H,H†) + LNc . (5.14)

The first three terms respectively include kinetic and gauge interactions of all fields,

fermion–scalar Yukawa interactions and the potential for scalar fields. The last term

is a contribution specific to the right-handed neutrinos, which are gauge-invariant. All

gauge boson interactions follow from covariantization of derivatives [eqs. (5.13)] of from

the gauge curvatures (5.4):

Lcin. = −1
4
FA
µνF

µν A − 1
4
W a
µνW

µν a − 1
4
BµνB

µν

+i
3∑

n=1

[
ψ

(n)

Qjαγ
µDµψ

(n) jα
Q + ψ

(n) j

Uc γµDµψ
(n)
Uc j + ψ

(n) j

Dc γµDµψ
(n)
Dc j

+ψ
(n)

Lαγ
µDµψ

(n)α
L + ψ

(n)

Ec γµDµψ
(n)
Ec + ψ

(n)

Ncγµ∂µψ
(n)
Nc

]
+(DµH)†(DµH).

(5.15)

Yukawa interactions are obtained by writing all gauge-invariant fermion–fermion–scalar
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terms. The contributions involving electrically charged particles are

LY uk. = −
3∑

n,m=1

[
λnmD εαβH

α(ψ
(n)
Dc j)

τCψ
(m) jβ
Q + λnmU εαβH

α
(ψ

(n)
Uc j)

τCψ
(m) jβ
Q

+λnmE εαβH
α(ψ

(n)
Ec )τCψ

(m)β
L

]
+ hermitian conjugate.

(5.16)

Since for any spinor5 ψL
τC = ψ

c

R, these interactions can be rewritten as

LY uk. = −
3∑

n,m=1

[
λnmD εαβH

α (ψ
(n)

D,R jψ
(m) jβ
Q,L ) + λnmU εαβH

α
(ψ

(n)

U,R jψ
(m) jβ
Q,L )

+λnmE εαβH
α (ψ

(n)

E,Rψ
(m)β
L,L )

]
+ hermitian conjugate,

(5.17)

reintroducing chirality indices L and R. Since an invariant of GSM of the form fermion–

fermion does not exist for charged particles, the Lagrangian does not include any

mass term for these fields. Such terms are forbidden by the fact that SU(2)L only

transforms left-handed fields. This is however only true as long as the symmetry is not

spontaneously broken. The Higgs mechanism which generates W± and Z0 masses also

produces quark and lepton masses.

The scalar potential is the most general fourth-order polynomial in H and H† (or

H) left invariant by gauge transformations of GSM :

V (H,H†) = −µ2H†H +
1

2
λ(H†H)2. (5.18)

At this stage, the theory includes the (dimensionless) coupling constants

gs, g, g
′, λnmU , λnmD , λnmE , λ,

which are arbitrary parameters of the theory. It also includes an arbitrary mass scale µ.

Notice that Yukawa couplings are complex numbers: some of the phases can however

be eliminated by redefining the phases of scalar and fermion fields.

The missing contributions of the right-handed neutrino spinors, ψ
(n)
N,R (or the left-

handed antineutrinos ψ
(n)
Nc,L) are:

LNc = −1

2

3∑
n,m=1

Mnm (ψ
(n)
Nc,L)τCψ

(m)
Nc,L + hermitian conjugate

−
3∑

n,m=1

λnmN εαβH
α
ψ

(n)

N,Rψ
(m)β
L,L + hermitian conjugate.

(5.19)

5Paragraph 1.4.1.
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Since the right-handed neutrino is gauge invariant [representation (1,1, 0)], it does not

have gauge interactions and its covariant derivative is an ordinary derivative ∂µ: it then

cannot be directly detected in a strong or electroweak interaction process. However,

the gauge invariance of these fields allows the first term in contribution (5.19), the

Majorana mass terms of right-handed neutrinos. The second line in expression (5.19)

describes Yukawa interactions of right-handed neutrinos with leptons and scalars. Via

the Higgs mechanism, LNc generates the mass matrix of neutrinos which, because of the

presence of Majorana masses, has a more complicated structure with more parameters

than charged lepton or quark mass matrices.



Chapter 6

Symmetry breaking and gauge
boson masses

6.1 Higgs mechanism and unitary gauge

The spontaneous symmetry breaking of SU(2)L × U(1)Y into U(1)Q with a complex

scalar doublet H has been discussed in section 4.3. We use here the results. In the

unitary gauge where the three Goldstone bosons have been “gauged away”, one can

choose

Hunit. =
1√
2

(
h(x) + v

0

)
, v2 =

2µ2

λ
, (6.1)

assuming that the parameters of the potential (4.39) verify µ2 > 0, λ > 0. The real

scalar field h(x) describes the Higgs boson. The vacuum expectation value 〈H〉 breaks

SU(2)L×U(1)Y , leaving invariant the subgroup U(1)Q of the electric charge, generated

by

Q = T 3 + Y. (6.2)

Since the scalar doublet H is invariant under transformations of the gauge group of

quantum chromodynamics SU(3), the subgroup of GSM left invariant by the expec-

tation value 〈H〉 is SU(3) × U(1)Q. This group is the exact gauge symmetry of the

Standard Model.

The Lagrangian density in the unitary gauge is obtained by substituting expression

(6.1) of the scalar doublet in contributions (5.14), (5.15), (5.17) and (5.18). The correct,

physically-relevant definition of the fields is then found by performing redefinitions

which diagonalize the mass matrices of spinors and gauge fields. The unitary gauge

Lagrangian will be split in four parts,

Lunit. = Lbos. + Lferm.,1 + Lferm.,2 − V (h), (6.3)
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Field GSM T3 Y Q = T3 + Y

AAµ (8, 1, 0) 0 0 0

W a
µ (1, 3, 0) 1,−1, 0 0 1, −1, 0

Bµ (1, 1, 0) 0 0 0
h 1/2 −1/2 0

ψ
(n) jα
Q =

(
ψ

(n) j
U

ψ
(n) j
D

)
(3,2, 1/6)

1/2
−1/2

1/6
2/3
−1/3

ψ
(n)
Uc j (3,1,−2/3) 0 −2/3 −2/3

ψ
(n)
Dc j (3,1, 1/3) 0 1/3 1/3

ψ
(n)α
L =

(
ψ

(n)
N

ψ
(n)
E

)
(1,2,−1/2)

1/2
−1/2

−1/2
0
−1

ψ
(n)
Ec (1,1, 1) 0 1 1

ψ
(n)
Nc (1,1, 0) 0 0 0

Table 6.1: Fields and quantum numbers

describing respectively the kinetic terms and gauge interactions of bosons, the fermion

mass terms, fermion interactions and kinetic terms and finally the scalar potential of

the Higgs field. In the unitary gauge, the scalar potential (5.18) becomes1

V (h) = −v
2

4
+ µ2h2 +

λ

2
vh3 +

λ

8
h4. (6.4)

Hence, the mass of the Higgs boson is given by the (arbitrary) parameter µ,

mh =
√

2µ =
√
λ v, (6.5)

and its self-interactions are controlled by coupling constant λ.

The quantum numbers under GSM and the electric charges of the fields in the

unitary gauge (i.e. using expression (6.1) for the scalar doublet H) are listed in table

6.1. Fermions are left-handed Weyl spinors. Each quark-lepton generation includes the

three colours and the four components (Dirac spinor) of a quark U (n) with charge 2/3

and of a quark D(n) with charge −1/3, the four components of a lepton E(n) with charge

−1, as well as the four components of a neutrino N (n). The right-handed chirality of the

neutrino is a singlet under GSM : it does not have any strong or electroweak interaction.

1The first constant contribution is irrelevant and can be discarded.
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6.1.1 Gauge bosons

The bosonic contribution Lbos. has already been derived in section 4.3. It is obtained

from

Lbos. = −1

4
FA
µνF

µν A − 1

4
W a
µνW

µν a − 1

4
BµνB

µν + (DµH)†(DµH) (6.6)

by replacing DµH by its expression in the unitary gauge,

DµH =
1√
2

(
∂µh− i

2
(gW 3

µ − g′Bµ) (h+ v)

− ig√
2

(W 1
µ + iW 2

µ) (h+ v)

)
.

The result is given in eqs. (4.54) and (4.55), in terms of the new vector fields

W+
µ = 1√

2
(W 1

µ − iW 2
µ), W−

µ = 1√
2
(W 1

µ + iW 2
µ) = (W+

µ )†,

Zµ = cos θWW
3
µ − sin θWBµ, Aµ = sin θWW

3
µ + cos θWBµ,

(6.7)

and of the weak mixing angle, or Weinberg angle, θW , defined by

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (6.8)

The massless field Aµ is the gauge field of the exact symmetry U(1)Q, the photon

field. This can be seen, besides the simple fact that it is the the only SU(2)L × U(1)Y

gauge field left massless, by observing that covariant derivatives (5.12) include the

combination

gW 3
µT

3 + g′BµY = g sin θW
[
AµQ+ Zµ(cotg θWT

3 − tg θWY )
]
.

The field Aµ couples then to the electric charge Q and the coupling constant of the

electromagnetic interaction is

e = g sin θW =
gg′√
g2 + g′2

. (6.9)

Gauge interactions in eq. (4.55) correspond to the particular case Y = 0 since these

fields do not have weak hypercharge. Each field Aµ is associated with coupling constant

e = g sin θW , while Zµ is associated with g sin θW cotg θW = g cos θW . In contrast, for

the Higgs boson, T 3 = 1/2 = −Y ; the coupling constant associated with each Zµ is

then
1

2
g sin θW [cotg θW + tg θW ] =

g

2 cos θW
,

which appears in the last interaction in expression (4.55). Cubic and quartic gluon

interactions are controlled by the strong coupling constant gs while the interaction
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with four W± is of order g2. The Higgs boson has interactions with W+W− and Z0Z0.

Knowledge of the W± mass determines the combination

MW =
1

2
gv , (6.10)

while relation2

MW = cos θW MZ (6.11)

follows from the use of a scalar doublet to break symmetry SU(2)L×U(1)Y . Measuring

MW , MW/MZ and e allows then to determine g, g′ and v. If mh > 2MW = gv, the

Higgs boson decays into W+W− pairs, if mh > 2MZ , is also decays into Z0Z0 pairs.

2This relation receives perturbative quantum corrections.



Chapter 7

Quarks and leptons: masses and
interactions

7.1 Fermion masses

Since SU(2)L only transforms left-handed quark and lepton fields, fermion mass terms

which couple left- and right-handed spinors are forbidden by gauge invariance. How-

ever, Yukawa interactions with the Higgs doublet H generate fermion masses as soon

as SU(2)L is spontaneously broken by the vacuum expectation value 〈H〉.

We will discuss neutrino masses, which are complicated by the presence of Majorana

terms in (5.19), in a separate section1. Hence, in this section, we keep neutrinos

massless: this was the case in the original formulation of the Standard Model and,

until recently (1998), massless neutrinos were compatible with observations.

The fermion mass terms for quarks and charged leptons induced by 〈H〉 are then

Lferm.,1 = − v√
2

3∑
n,m=1

[
λnmD (ψ

(n)

D,R jψ
(m)j
D,L ) + λnmU (ψ

(n)

U,R jψ
(m)j
U,L )

+λnmE (ψ
(n)

E,Rψ
(m)
E,L)

]
+ hermitian conjugate.

(7.1)

In this basis of the spinor fields, mass matrices are proportional to the Yuwawa coupling

matrices λD,U,E and are not in general diagonal in generation indices n,m. Spinor

kinetic terms are actually invariant under independent unitary rotations of the left-

handed spinors of a given electric charge2 and this freedom can be used to diagonalize

1Section 7.3.
2See eq. (5.15).
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the mass matrix:

ψ
(n)j
D,L = (UD)nmΨ

(m)j
D,L , ψ

(n)j
D,R = (OD)nmΨ

(m)j
D,R ,

ψ
(n)j
U,L = (UU)nmΨ

(m)j
U,L , ψ

(n)j
U,R = (OU)nmΨ

(m)j
U,R ,

ψ
(n)
E,L = (UE)nmΨ

(m)
E,L, ψ

(n)
E,R = (OE)nmΨ

(m)
E,R.

(7.2)

The unitary matrices UD,U,E and OD,U,E are chosen3 such that matrices O†DλDUD,

O†UλUUU and O†EλEUE are diagonal with real eigenvalues:

(O†DλDUD)nm = λD,n δ
nm,

(O†UλUUU)nm = λU,n δ
nm,

(O†EλEUE)nm = λE,n δ
nm.

(n,m = 1, 2, 3). (7.3)

Since neutrinos are massless (in this section), a redefinition of spinors ψ
(n)
N,L or ψ

(n)
N,R is

not needed. Conventionally, eigenvalues are ordered according to

λ],1 < λ],2 < λ],3, ] = D,U,E.

With these manipulations, fermion mass terms (7.1) become simply

Lferm.,1 = −
3∑

n=1

[
mD,n(Ψ

(n)

D,R jΨ
(n)j
D,L) +mU,n(Ψ

(n)

U,R jΨ
(n)j
U,L ) +mE,n(Ψ

(n)

E,RΨ
(n)
E,L)

]
+ hermitian conjugate.

(7.4)

It is in this new basis of eigenstates of fermion mass matrices that spinorial fields are

identified with quarks u, d, s, c, b, t and charged leptons e, µ, τ . The first generation

n = 1 includes the lightest charged fermions e, d and u, and a first neutrino νe:

me = mE,1 = λE,1
v√
2
, md = mD,1 = λD,1

v√
2
, mu = mU,1 = λU,1

v√
2
,

The second generation n = 2 includes µ, s, c and νµ, the third and last (n = 3) τ, b, t

and ντ .

Quark and charged lepton masses are given by the eigenvalues of the Yukawa cou-

pling matrices multiplied by v/
√

2: they are then arbitrary parameters: the Standard

Model does not predict any relation between fermions masses.

3It is always possible.
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7.2 Fermion interactions and kinetic terms

Diagonalization of their mass matrices, as done in previous section, defines the physical-

ly-relevant basis of spinor fields. Their interactions are then of two types: firstly

gauge interactions contained in covariant derivatives in expression (5.15) and naturally

associated with propagation terms of spinor fields, secondly Yukawa interactions with

the Higgs boson derived from eq. (5.17). We then write

Lferm.,2 = Lgauge + LY uk. (7.5)

to distinguish both types of interactions.

Since the unbroken gauge symmetry group is SU(3)×U(1)Q, one can certainly write

fermion kinetic terms using covariant derivatives of this group. And since interactions

dictated by this gauge symmetry (strong and electromagnetic interactions) respect

parity, they can be formulated in terms of four-component Dirac spinors:

Lgauge =
3∑

n=1

[
iΨ

(n)

Djγ
µD̃µΨ

(n)j
D + iΨ

(n)

Uj γ
µD̃µΨ

(n)j
U + iΨ

(n)

E γµD̃µΨ
(n)
E

+iΨ
(n)

N,Lγ
µ∂µΨ

(n)
N,L

]
+ LWZ .

LWZ contains all fermion weak interactions with massive gauge bosons W±
µ and Zµ

and covariant derivatives of SU(3)× U(1)Q are

D̃µΨ
(n)j
D = ∂µΨ

(n)j
D − igsAAµ (TA3 )jkΨ

(n)k
D + 1

3
ieAµΨ

(n)j
D ,

D̃µΨ
(n)j
U = ∂µΨ

(n)j
U − igsAAµ (TA3 )jkΨ

(n)k
U − 2

3
ieAµΨ

(n)j
U ,

D̃µΨ
(n)
E = ∂µΨ

(n)
E + ieAµΨ

(n)
E ,

with again e = g sin θW . The electromagnetic interaction is of the form

eAµ j
µ
e.m., jµe.m. =

3∑
n=1

[
−Ψ

(n)

E γµΨ
(n)
E +

2

3
Ψ

(n)

Uj γ
µΨ

(n)j
U − 1

3
Ψ

(n)

Djγ
µΨ

(n)j
D

]
,

as already obtained in section 1.4.

Similarly, the weak interaction of fermions has the following form:

LWZ =
g√
2
W+
µ j
−µ +

g√
2
W−
µ j

+µ + gZµj
0µ. (7.6)

The charged fermionic currents are

j−µ =
3∑

n=1

Ψ
(n)

N,Lγ
µΨ

(n)
E,L +

3∑
m,n=1

(U)mnΨ
(m)

U,Ljγ
µΨ

(n)j
D,L,

j+µ =
3∑

n=1

Ψ
(n)

E,Lγ
µΨ

(n)
N,L +

3∑
m,n=1

(U †)mnΨ
(m)

D,Ljγ
µΨ

(n)j
U,L = [j−µ]†.

(7.7)
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The charged leptonic current defines the natural basis of the neutrino spinor fields

Ψ
(n)
N,L. We have defined

ψ
(n)
N,L = (UE)nmΨ

(m)
N,L (7.8)

and Ψ
(n)
N,L is then the left-handed neutrino associated with charged lepton Ψ

(n)
E : it

is coupled to the charged lepton Ψ
(n)
E by the weak interaction of the charged boson

W±. This is a legitimate definition as long as neutrinos are massless. With massless

neutrinos, there is a conserved leptonic number for each generation.

In contrast, there exists a mixing between generations in charged current weak

interactions of quarks, through the matrix

Umn = (U †U UD)mn, (7.9)

which is the Cabibbo-Kobayashi-Maskawa matrix. Since U is unitary, U †U = I, it

contains in principle nine real parameters, including three rotation angles in the space

of the three generations. It is however possible to redefine the six phases of spinors

Ψ
(n)j
U,L and Ψ

(n)j
D,L without affecting the diagonal structure of quark mass matrices or the

matrices governing other interactions4. Since a global phase does not act on U , five

of the nine parameters of U are unobservable. As a result, the Cabibbo-Kobayashi-

Maskawa matrix includes three angles describing the weak coupling of quarks from

different generations and one (observable) complex phase. This phase is a source for

CP violation in charged current weak interactions.5 Indeed, the transformation under

CP of the hadronic term contained in W+
µ j
−µ is

3∑
m,n=1

W+
µ (U)mnΨ

(m)

U,Ljγ
µΨ

(n)j
D,L

CP−→
3∑

m,n=1

W−
µ (U τ )mnΨ

(m)

D,Ljγ
µΨ

(n)j
U,L .

The transformed term differs from W−
µ j

+µ if the Cabibbo-Kobayashi-Maskawa matrix

is complex: U τ 6= U †. Even if it manifests itself in the quarks–W± interaction, the

origin of the CP violation is to be found in the form of Yukawa couplings λmnD and

λmnU . From their diagonalization (7.3) follows actually the form of the matrix U and

then the value of a complex phase violating CP .

4It is sufficient to apply the opposite redefinition to spinors Ψ(n)j
U,R and Ψ(n)j

D,R which do not appear
in charged curents.

5With two generations only, U would have four parameters, an angle and three phases. Since one
can eliminate 4− 1 phases in this case, the only observable parameter is the Cabibbo angle measuring
the mixing of the two generations and CP symmetry cannot be violated with two generations only.
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The neutral current appearing in the interaction fermions–Zµ is

j0
µ =

1

cos θW

3∑
n=1

[1

2
Ψ

(n)

N,Lγ
µΨ

(n)
N,L

+
(
−1

2
+ sin2 θW

)
Ψ

(n)

E,Lγ
µΨ

(n)
E,L + sin2 θW Ψ

(n)

E,Rγ
µΨ

(n)
E,R

+
(1

2
− 2

3
sin2 θW

)
Ψ

(n)

U,Ljγ
µΨ

(n)j
U,L −

2

3
sin2 θW Ψ

(n)

U,Rjγ
µΨ

(n)j
U,R

+
(
−1

2
+

1

3
sin2 θW

)
Ψ

(n)

D,Ljγ
µΨ

(n)j
D,L +

1

3
sin2 θW Ψ

(n)

D,Rjγ
µΨ

(n)j
D,R

]
.

(7.10)

The neutral current weak interation does not allow generation mixing: there are no

flavour-changing neutral currents (FCNC).

In the unitary gauge and in the basis where fermion mass matrices are diagonal,

Yukawa interactions are obtained according to (6.1) by replacing v by h in Lferm.,1.

We then obtain:

LY uk. = − 1√
2
h

3∑
n=1

[
λD,n(Ψ

(n)

D,R jΨ
(n)j
D,L) + λU,n(Ψ

(n)

U,R jΨ
(n)j
U,L ) + λE,n(Ψ

(n)

E,RΨ
(n)
E,L)

]
+ hermitian conjugate,

(7.11)

as a function of eigenvalues (7.3). The coupling constant of a fermion with mass mf

to the Higgs boson is then
mf

v
=
g

2

mf

MW

.

It is proportional to the fermion mass. It is a weak interaction (constant g) with a

suppression factor mf/MW � 1 for all fermions, except for the top quark.

7.3 Massive neutrinos

Neutrinos are not massless, but their masses are nevertheless much smaller than quarks

and charged lepton masses. There is a crucial difference: right-handed neutrinos are

GSM singlets (1,1, 0) and a Majorana mass term is then allowed.

We first consider the simple model of a single generation. We then have two neutrino

Weyl spinors ψN,L and ψN,R and two mass terms are allowed:

−m(ψN,LψN,R + ψN,RψN,L)−M(ψN,R)τCψN,R

=
(

(ψN,L)τC (ψN,R)τC
)( 0 m

m M

)(
ψN,L
ψN,R

)
.

(7.12)
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The first contribution, with coefficient m, is the Dirac mass which in the Standard

Model is induced by Yukawa coupling to the scalar doublet H, as for charged fermions:

m = λNv/
√

2 in terms of the neutrino Yukawa coupling λN and of the vacuum ex-

pectation value v. Since there is no reason to expect that neutrino Yukawa couplings

are much smaller than other Yukawa couplings, m should have similar magnitude as a

quark or charged lepton mass. The second term is the Majorana mass which is invariant

under GSM only for the right-handed neutrino. The mass scale M is a free parameter

of the Standard Model. The eigenvalues and eigenstates of the one-generation neutrino

sector are then:

m1 =
M

2

(
1−

√
1 +

4m2

M2

)
, ψ1 ∼ ψN,L +

M

2m

(
1−

√
1 +

4m2

M2

)
ψN,R,

m2 =
M

2

(
1 +

√
1 +

4m2

M2

)
, ψ2 ∼

m

M
ψN,L +

1

2

(
1 +

√
1 +

4m2

M2

)
ψN,R.

(7.13)

Assume then m�M :

m1 ∼ −m
2

M
, ψ1 ∼ ψN,L −

m

M
ψN,R

m2 ∼ M, ψ2 ∼ ψN,R +
m

M
ψN,R.

(7.14)

We then find a very light neutrino state which is essentially the left-handed component

which feels weak interactions ψN,L, and a heavy state, essentially made with ψN,R , with

much weaker interactions6 that other quarks and leptons (and then almost impossible

to detect).

Returning to the three-generation case, the description of neutrino masses in the

Standard Model uses the left-handed antineutrino spinors ψ
(n)
Nc,L (or equivalently, the

right-handed neutrinos ψ
(n)
N,R) and terms (5.19) of the Lagrangian. We have up to now

defined neutrino fields νe, νµ and ντ from their weak couplings to charged leptons, using

the unitary change of basis (7.8). We will work in this basis to obtain the neutrino

mass matrix, which will then be non-diagonal in general. Mass terms following from

(5.19) read then

−1

2

3∑
n,m=1

(
M∗

nm (Ψ
(n)
N,R)τCΨ

(m)
N,R +

√
2vλ̃N nmΨ

(n)

N,RΨ
(m)
N,L

)
+ hermitian conjugate ,

(7.15)

with λ̃N nm = λnpN (UE)pm, noting however that the matrix UE is not observable. The

neutrino mass matrix involves then Majorana masses Mmn of the right-handed neu-

6There is a suppression factor m/M � 1.
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trinos and the terms induced by the symmetry breaking and proportional to Yukawa

couplings λ̃N nm. It is the generalization of structure (7.12) to three generations and

in the limit where the eigenvalues of Mmn are large with respect to λ̃N,mnv, one will

obtain three light, mostly left-handed, neutrino states (with weak interactions) and

three heavy mostly right-handed states (without any interaction). Similarly to the

CKM matrix for quarks, a mixing matrix will arise for leptons and, since the neutrino

mass matrix involves even more free parameters than, for instance the charged lepton

sector, masses and mixing are not predicted.

7.4 Parameters, numerical values

Without counting parameters describing neutrino masses and mixings, the Standard

Model has eighteen (perturbative) arbitrary parameters:

• Three gauge coupling constants gs, g and g′.

Physical processes calculated in perturbation theory are actually functions of

g2
s/4π, g2/4π and g′2/4π. The common practice is to characterize the three

constants in terms of

αs =
g2
s

4π
, (strong coupling constant),

sin θW =
g′√

g2 + g′2
, (θW : Weinberg angle),

α =
e2

4π
' (137)−1, e = g sin θW , (fine structure constant).

Experimentally7, sin2 θW (MZ) = .231, αs(MZ) = .12, α(me) = 137−1 (while

α(MZ) ' 128−1).

• The mass MW of the weak boson W±, or Fermi constant GF .

To lowest order in perturbation theory, these two quantities are related by.

g2

8M2
W

=
1

2v2
=

1√
2
GF .

Weak interaction processes with (exchanged) energies much smaller than MW

provide a direct measure ofGF : v = (
√

2GF )−1/2 ' 246 GeV and withMW = 80.4

GeV, g ' .65 ( g
2

4π
' .034).

7These coupling constants actually depend on energy.
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• The nine masses of quarks u, d, s, c, b, t and leptons e, µ, τ .

Since quarks only appear in colourless bound states (hadrons) measuring their

masses is subtle and possibly ambiguous. Masses of light quarks u, d and s cannot

be directly evaluated: these quarks form bound states where most of the mass,

which is not well understood theoretically, is due to the nonperturbative dynamics

of quantum chromodynamics, and not to the masses of the constituents of the

bound states. The quark masses are then evaluated from their weak interactions:

mu = 1.7 − 3.3 MeV, md = 4.1 − 5.8 MeV and ms = 80 − 130 MeV. Quarks

c and b form more ordinary bound states. Masses of states cc (charmonium)

and bb (bottomonium) in particular give a good evaluation of quark masses:

mc = 1.18− 1.34 GeV and mb = 4.1− 4.4 GeV. The top quarks is so heavy that

its bound states are too short-lived to provide useful information8. The value of

its mass is then obtained from decay processes: mt = 172.0± .9± 1.3 GeV.

• The four parameters (three angles and one CP violating phase) of the Cabibbo-

Kobayashi-Maskawa matrix.

Their values can be obtained from charged current weak interaction processes,

mixing generations and CP violation is (hardly) accessible in systems9 K0–K
0

and B0–B
0
.

• The Higgs boson mass mh =
√
λ v [eq. (6.5)].

The existence of the Higgs boson has not been established and its mass is then

unknown. It is the first priority of experiments at LHC to either find the Higgs

and measure its mass or disprove its existence within the energy range compatible

with the Standard Model. Knowledge of mh ialso gives the value of the couling

constant λ which controls Higgs interactions.

8If they would be seen.
9Neutral mesons K0 and B0 are states sd and bd.
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